
Lorenz A. Gilch

Rate of Escape of

Random Walks

DISSERTATION

zur Erlangung des akademischen Grades

Doktor der technischen Wissenschaften

Technische Universität Graz

Institut für mathematische Strukturtheorie

Betreuer und Erstgutachter:

Univ.-Prof. Dipl.-Ing. Dr.rer.nat. Wolfgang Woess

(TU Graz)

Zweitgutachter:

Prof. Dr. Donald I. Cartwright
(University of Sydney)

Graz, Januar 2007





Contents

Introduction 1

1 Graphs and Random Walks 5

1.1 Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Random Walks on Graphs . . . . . . . . . . . . . . . . . . . . 6

I Rate of Escape of Random Walks on Free Products 11

2 Free Products of Graphs 13

2.1 The Free Product of Graphs . . . . . . . . . . . . . . . . . . . 13

2.2 Random Walk on the Free Product . . . . . . . . . . . . . . . 15

2.3 Properties of Generating Functions . . . . . . . . . . . . . . . 17

2.4 Limit of the Random Walk . . . . . . . . . . . . . . . . . . . 20

2.5 Convergence Criteria for Green Functions . . . . . . . . . . . 22

3 Rate of Escape w.r.t. the Block Length 25

3.1 Computation by Exit Times . . . . . . . . . . . . . . . . . . . 26

3.1.1 Exit Times . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1.2 Exit Points and Increments . . . . . . . . . . . . . . . 26

3.1.3 Rate of Escape w.r.t. the Block Length . . . . . . . . 30

3.1.4 Computation of ν . . . . . . . . . . . . . . . . . . . . 35

3.2 Computation by Double Generating Functions . . . . . . . . 37

3.3 Computation by Limit Processes . . . . . . . . . . . . . . . . 40

3.4 Partial Rate of Escape w.r.t. the Block Length . . . . . . . . 45

3.5 Deviation from the Limit Path . . . . . . . . . . . . . . . . . 47

i



3.6 Sample Computations . . . . . . . . . . . . . . . . . . . . . . 48

3.6.1 Z/2Z ∗ Z/3Z . . . . . . . . . . . . . . . . . . . . . . . 49

3.6.2 Free Product of Non-Cayley-Graphs . . . . . . . . . . 51

3.6.3 Z
2 ∗ Z

2 and Z
2 ∗ Z/2Z . . . . . . . . . . . . . . . . . . 53

3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4 Rate of Escape w.r.t. other Length Functions 59

4.1 Computation by First Exit Times . . . . . . . . . . . . . . . . 59

4.2 Computation by Double Generating Functions . . . . . . . . 61

4.3 Partial Rate of Escape w.r.t. Minimal Path Length . . . . . . 63

4.4 Sample Computations . . . . . . . . . . . . . . . . . . . . . . 65

4.4.1 Free Product of Non-Cayley-Graphs . . . . . . . . . . 65

4.4.2 Free Product with an Infinite Factor . . . . . . . . . . 66

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

II Acceleration of Lamplighter Random Walks 69

5 Lamplighter Random Walks 71

5.1 Lamplighter Graphs . . . . . . . . . . . . . . . . . . . . . . . 71

5.2 Random Walks on Lamplighter Graphs . . . . . . . . . . . . 73

6 Acceleration of Lamplighter Random Walks 77

6.1 The Case δL > 0 . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.2 The Case δL = 0 . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.2.1 Graphs with Infinitely many Ends . . . . . . . . . . . 81

6.2.1.1 Case Λ ≥ 2 . . . . . . . . . . . . . . . . . . . 82

6.2.1.2 Case Λ = 1 . . . . . . . . . . . . . . . . . . . 86

6.2.2 Two-ended Graphs . . . . . . . . . . . . . . . . . . . . 87

6.3 The Case `0 = 0 . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.4 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.4.1 Switch-Walk-Switch Random Walk . . . . . . . . . . . 94

6.4.2 Walk-or-Switch Random Walk . . . . . . . . . . . . . 94

6.4.3 Multi-State Lamps . . . . . . . . . . . . . . . . . . . . 95

ii



6.4.4 Markovian Distance . . . . . . . . . . . . . . . . . . . 95

6.4.5 Greenian Distance . . . . . . . . . . . . . . . . . . . . 95

6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

7 Lamplighter Tree 97

7.1 Simple Random Walk on the Lamplighter Tree . . . . . . . . 97

7.2 Lower and Upper Bound . . . . . . . . . . . . . . . . . . . . . 101

7.3 Another Lower Bound . . . . . . . . . . . . . . . . . . . . . . 107

7.4 Switch-Walk-Switch Random Walk . . . . . . . . . . . . . . . 109

Acknowledgements 113

References 115

iii





Introduction

Consider a transient Markov chain (Zn)n∈N0 on a state space V and a suit-
able length function l on V representing a ‘word length’ with respect to the
starting point of the Markov chain. For better visualization, we think of a
random walk on a connected graph G with vertex set V . We are interested in
whether the sequence of random variables l(Zn)/n converges almost surely
to a constant, and if so, to compute this constant or to bound it. If the
limit exists, it is called the rate of escape, or the drift with respect to l and
it describes the speed of the random walk’s escape to ‘infinity’. In the first
part of this work, we study this question for random walks on general free
products of graphs. For transitive base graphs, we investigate in the second
part of this work the relation between the drift of a lamplighter random
walk and the drift of its projection onto the base graph.

We give some background material, restricting ourselves to random walks
on graphs and discrete groups. On the d-dimensional grid Z

d, where d ≥ 1,
random walks can be described by the sum of n independent and identically
distributed random variables, the increments of each of the n steps. By the
weak law of large numbers, the limit limn→∞ ‖Zn‖/n exists almost surely,
where ‖ · ‖ is the distance on the grid to the starting point of the random
walk. Furthermore, this limit is the norm of the average displacement in
one step and it is positive if the increments have non-zero mean vector. The
first result regarding the rate of escape was presented by Kesten [19], who
showed for symmetric random walks on groups that the spectral radius is 1 if
lim infn∈N E[l(Zn)/n] = 0, where l(·) is the minimal word length with respect
to a fixed set of generators of the group. For random walks on generalized
lattices, that is, graphs where Z

d acts with finitely many orbits, Salvatori
[35] proved that the average mean displacement is zero if and only if the
rate of escape is zero.

It is well-known that the rate of escape exists also for random walks on a
finitely generated group equipped with a suitable metric, where the random
walk arises from a probability measure on the group elements. This follows
from Kingman’s subadditive ergodic theorem; see Kingman [20], Derriennic
[8] and Guivarc’h [13]. If l is the path metric of a Cayley graph, then the
sequence l(Zn)/n converges almost surely to a constant and this constant is
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INTRODUCTION

positive in the case when the group is non-amenable and the random walk is
irreducible. Erschler [10], [11] investigated asymptotics of the drift of sym-
metric random walks on finitely generated groups. Mairesse [25] computed
an explicit formula in terms of the unique solution of a system of polynomial
equations for the rate of escape of random walks on the braid group.

There are many detailed results for random walks on groups acting on trees:
Sawyer [36] investigated the drift of isotropic random walks on homoge-
neous trees describing the gene flow in a population. Sawyer and Steger [37]
studied the rate of escape for anisotropic random walks in a tree. Cartwright,
Kaimanovich and Woess [5] investigated the boundary of homogeneous trees
and the drift of random walks on them. Nagnibeda and Woess [30, Section 5]
proved that the rate of escape of random walks on trees with finitely many
cone types is non-zero and give a formula for it. The drift has also been
studied for isotropic random walks on affine buildings by Cartwright and
Woess [7] and by Parkinson [31].

We will also deal with random walks on lamplighter graphs. If G is the Cayley
graph of a group Γ, the lamplighter graph is the Cayley graph of the wreath
product (Z/2Z) o Γ. There are also many detailed results for random walks
on wreath products: Lyons, Pemantle and Peres [23] gave a lower bound for
the rate of escape of inward-biased random walks on lamplighter groups.
Bertacchi [1] studied random walks on Diestel-Leader graphs and proved a
strong law of large numbers regarding the rate of escape. Erschler (Dyubina)
[9] proved that the drift of symmetric random walks on the wreath product
(Z/2Z) o A, where A is a finitely generated group, is zero if and only if the
random walk’s projection onto A is recurrent. For symmetric random walks
on iterated wreath products of the form ((F o Z

2) · · · o Z2) o Z2, where F is a
finite group, and ((Z o Z) · · · o Z) o Z

2, Erschler [10] proved zero drift. Revelle
[34] examined the rate of escape of random walks on wreath products. He
proved laws of the iterated logarithm for the inner and outer radius of escape.

There are further more general results regarding the rate of escape. The
relation of the rate of escape with the entropy and growth of random walks
was investigated by Kaimanovich and Vershik [15] and Kaimanovich and
Woess [17]. Basing upon [15], an important link between drifts and Poten-
tial Theory was obtained by Varopoulos [38]. He proved that for symmetric
finite range random walks on groups the existence of non-trivial bounded
harmonic functions is equivalent to a non-zero rate of escape. In particular,
it follows from these papers that for symmetric random walks on groups
with finite first moment non-zero entropy is equivalent to a non-zero drift.
Recently, Mathieu [27] proved zero drift for centered random walks. For
non-group-invariant random walks on non-amenable graphs with infinitely
many ends and hyperbolic graphs, Kaimanovich and Woess [16] proved that
lim infn→∞ l(Zn)/n > 0, where l(Zn) is the graph distance at time n to
the starting point. Karlsson and Ledrappier [18] linked Busemann func-
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INTRODUCTION

tions with the drift of random walks on locally finite, homogeneous graphs.
Blachère and Brofferio [2] introduced the Greenian metric, which arises from
transition probabilities and is not induced by shortest paths, and Blachère,
Häıssinsky and Mathieu [3] proved that entropy and rate of escape with
respect to (w.r.t.) the Greenian metric of random walks on groups are equal.

In Part I of this work we study the question of existence of the rate of es-
cape for random walks on free products of finitely many graphs, on which
random walks are given and from which we construct in a natural way a
random walk on the free product. For a restricted class of free products of
finite groups, Mairesse [24] and Mairesse and Mathéus [26] have developed
a specific technique for computation of the rate of escape w.r.t. the word
length. These papers were the starting point for the present investigation
of arbitrary free products. Our aim is to show existence of the rate of es-
cape for various natural length functions and to compute formulas for it.
The techniques that we use for rewriting probability generating functions
in terms of functions on the factors of the free product were introduced in-
dependently and simultaneously by Cartwright and Soardi [6], Woess [41],
Voiculescu [39] and McLaughlin [28]. After a general introduction to graphs
and random walks in Chapter 1 we proceed in Part I as follows:

Having introduced the structure of free products and random walks in Chap-
ter 2, we prove in Chapter 3 existence of the rate of escape w.r.t. the word
length, and we will also compute three different, equivalent formulas for it
using different techniques. Furthermore, we prove existence and give a for-
mula for the rate of escape w.r.t. the partial word length, that is, we count
only some pre-selected letters when computing the length. We will also show
in this chapter that the random walk trajectory on the free product will be
almost surely logarithmically close to the path described by its boundary
limit. In Chapter 4, we extend the presented techniques to prove existence
of the rate of escape on the free product w.r.t. length functions induced
by path metrics, weights on the vertices or partial path lengths. We also
compute formulas for them.

In Part II, we consider lamplighter random walks, which can be modelled
by random walks on lamplighter graphs, and their drift. Starting with a
transitive, connected, locally finite, weighted graph G, we think of a lamp
sitting at each vertex, which can have the states 0 (‘off’) or 1 (‘on’). Initially,
all lamps are off. We think of a lamplighter walking along G and switching
lamps on or off. We investigate the following model (‘Switch-Walk-Switch’)
of a transient lamplighter random walk: the lamplighter tosses a coin for
deciding whether to change the lamp at the current vertex, followed by a
step to a random vertex, followed by tossing the coin once again for deciding
whether to change the lamp’s state at the destination vertex. This model
will be generalized and described by a transient Markov chain (Zn)n∈N0 ,
which represents the position of the lamplighter and the lamp configuration

3



INTRODUCTION

at time n. The weight of a path in G is the sum of the weights of its edges.
If m(η, x) is the minimal weight of a path for the lamplighter starting at
some fixed vertex o of G with all lamps off to restore the configuration η
and to reach some vertex x of G, then a natural length function |(η, x)| is
given by m(η, x)+ |supp(η)| · δL for some pre-selected δL ≥ 0. Thus, m(η, x)
is the length of an optimal ‘travelling salesman’ tour from o to x that visits
each point of supp(η). We will distinguish whether δL > 0 or not. Denote
by Xn the projection of Zn onto G and by d(·, ·) the metric on G induced
by the weights of the edges. We are interested in the relation between the
almost sure limits ` = limn→∞ |Zn|/n and `0 = limn→∞ d(o,Xn)/n. The
number ` is the rate of escape of the lamplighter random walk and `0 is the
rate of escape of the lamplighter random walk’s projection onto G. We will
prove that, under suitable assumptions on G, we have ` > `0, that is, the
lamplighter random walk escapes w.r.t. | · | strictly faster to infinity than its
projection onto G, on which we consider the metric d(·, ·).
It is not obvious that a lamplighter random walk is in general faster than its
projection onto G: e.g., consider the Switch-Walk-Switch lamplighter random
walk on Z with drift. Then the rate of escape of the lamplighter random walk
is equal to the one of the random walk’s projection onto Z, whenever δL = 0.
This follows from a result of Bertacchi [1].

The structure of Part II of this work is as follows: in Chapter 5, we give an in-
troduction to lamplighter random walks on transitive graphs. In Chapter 6,
we prove the acceleration of the lamplighter random walk under suitable
assumptions: we will show that ` > `0 holds in the case δL > 0. If δL = 0
and `0 > 0, then we prove this inequality assuming that G has at least
two ends, where in the case of two-ended G we assume additionally that
the edges have uniform weight 1. For `0 = 0, the acceleration of the lamp-
lighter random walk follows from results of Kaimanovich and Vershik [15]
and of Varopoulos [38]. In Chapter 7, we consider the special case that G is a
homogeneous tree: for a Walk-or-Switch lamplighter random walk (the lamp-
lighter either walks or switches a lamp in one step), we represent the rate of
escape by two formulas and compute two lower and one upper bound for the
lamplighter’s drift. Additionally, we compute a tighter lower bound (tighter
than the one obtained by Chapter 6) for the drift of the Switch-Walk-Switch
lamplighter random walk.
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Chapter 1

Graphs and Random Walks

In this chapter, we give an introduction to graphs and random walks on
them. Furthermore, we introduce some basic tools for later computations.
As an initial remark, let us mention that we write N = {1, 2, . . . } and
N0 = {0, 1, 2, . . . }.

1.1 Graphs

A graph G = (VG, EG) consists of a finite or countable set of vertices VG and
a set EG ⊆ V 2

G
, the set of oriented edges of G. Thus, (x, y) ∈ EG means that

there is an edge from x to y. Note that for sake of simplicity we exclude
loops, that is, (x, x) /∈ EG for all x ∈ VG. Furthermore, there is at least one
outgoing edge from each vertex. We select a special vertex oG of G as the
‘root’. The graph G is non-trivial if VG has at least two vertices. The graph
is called locally finite, if at each vertex x ∈ VG there is only a finite degree
number deg(x) of outgoing edges, and G has bounded vertex degree, if there
is c ∈ N such that deg(x) ≤ c for all x ∈ VG. An automorphism γ of G is a
bijection of VG to itself such that (x1, x2) ∈ EG if and only if (γx1, γx2) ∈ EG

for all x1, x2 ∈ VG. The set of automorphisms is denoted by AUT(G). The
graph G is transitive if for all x, y ∈ VG there is γ ∈ AUT(G) with γx = y. If
there is a subgroup Γ0 of AUT(G) such that these γ’s with γx = y can be
chosen from Γ0, then we say that Γ0 acts transitively on G. If G is transitive,
then all vertices have the same degree denoted by deg(G).

A path from x ∈ VG to y ∈ VG of length n is a sequence

[x = x0, x1, . . . , xn−1, xn = y]

of vertices in VG such that there is an oriented edge from xi−1 to xi for all
i ∈ {1, . . . , n}. The graph G is connected if each pair of vertices can be joined
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CHAPTER 1. GRAPHS AND RANDOM WALKS

by a path. We shall assume that our graphs are root-connected, that is, for
all x ∈ VG \ {oG} there is a path from the root oG to x.

The graph structure carries a distance measure denoted by dG(x, y), where
x, y ∈ VG, as the minimal length of all paths from x to y, if y can be reached
by a path starting in x. Otherwise we set dG(x, y) = ∞. Observe that, in
general, dG(x, y) is not the length of a shortest path from y to x. For our
purpose, we are mainly interested in distances from oG with respect to more
general distance measures and define:

Definition 1.1 (Length Function). A length function on G is a function
l : VG → R≥ with l(oG) = 0.

Obviously, we consider only length functions which are adapted to the graph
structure in a suitable way. E.g., with this definiton the distance measure
dG(oG, ·) on G is a length function.

1.2 Random Walks on Graphs

We think of a walker starting at oG and moving randomly from vertex to
vertex in G. A random walk on G is given by a transition matrix or transition

operator

PG =
(
pG(x, y)

)
x,y∈VG

,

where pG(x, y) describes the single step transition probability, the probability

of walking in one step to y when standing at x. We write p
(n)
G

(x, y) for
the corresponding n-step transition probability, that is, the probability of
walking in n steps to y when starting at x. As a general basic assumption, we
suppose that (x, y) ∈ EG implies pG(x, y) > 0. Obviously, each random walk
on any finite or countable state space can be described as a random walk on
a graph, whose vertex set is the state space and the edges are induced from
all positive single step transition probabilities pG(x, y) with x 6= y.

The random walk has bounded range if

sup
{
dG(x, y)

∣∣ x, y ∈ VG, pG(x, y) > 0
}
<∞.

The random walk is a nearest neighbour random walk, if also pG(x, y) > 0
implies (x, y) ∈ EG. The random walk process is described by a Markov
chain denoted by a sequence of random variables (Yn)n∈N0 , where Yn is
the random vertex at time n. Actually, we have Y0 = oG in most cases.
Otherwise, for P[ · |Y0 = x] we write for short Px[ · ], which is the probability
measure on V N0

G
that governs the random walk starting at x ∈ VG. The

transition operator PG is irreducible if for all x, y ∈ VG there is some n ∈ N

such that p
(n)
G

(x, y) > 0. The random walk is transient if each vertex is visited
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1.2. RANDOM WALKS ON GRAPHS

only finitely often with probability 1. Equivalently, in the transient case,
almost surely each finite subset of vertices is visited only finitely often; see
e.g. Woess [43, Proposition 1.17]. If G is transitive, we call also PG transitive

(or space-homogeneous) if there is a subgroup Γ ⊆ AUT(G) such that for all
x, y ∈ VG there is γ ∈ Γ with γx = y and pG(x1, x2) = pG(γx1, γx2) for all
x1, x2 ∈ VG. In this case we call (G, PG) transitive.

Considering some selected classes of graphs we are mainly interested to
investigate the speed of transient random walks to infinity. For this purpose,
we define the following characteristical escape ‘speed number’:

Definition 1.2 (Rate of Escape, Drift). Let l be a length function on
the graph G. If there is a constant l ∈ R≥ such that

l = lim
n→∞

1

n
l(Yn) almost surely,

then l is called the rate of escape or drift with respect to l of (Yn)n∈N0 .

Obviously, the rate of escape is only of interest for transient random walks.
For transitive graphs equipped with a suitable metric, existence of the rate of
escape with respect to the distance to oG is a consequence of Kingman’s sub-
additive ergodic theorem (Kingman [20]), which we formulate most suitable
for our case:

Theorem 1.3. Consider the probability space Ω = V N0
G

and denote by T the
time shift on Ω with T (x0, x1, . . . ) = (x1, x2, . . . ). If (Wn)n∈N0 is a subad-
ditive sequence of non-negative real-valued random variables, that is, for all
k, n ∈ N0 holds Wk+n ≤ Wn +Wk ◦ T n, and if W1 is integrable, then there
is a T -invariant real-valued integrable random variable W∞ with

lim
n→∞

1

n
Wn = W∞ almost surely.

Moreover, if (G, PG) is transitive such that a subgroup Γ0 of AUT(G) acts
transitively on G with pG(x1, x2) = pG(γx1, γx2) for all γ ∈ Γ0, x1, x2 ∈ VG,
and if d(·, ·) is a Γ0-invariant metric on G with finite first moment w.r.t.
PG, that is,

∑
x∈VG

d(oG, x)pG(oG, x) <∞, then there is a constant ` such
that

lim
n→∞

1

n
d(oG, Yn) = ` almost surely.

Proof. See Derriennic [8], Guivarc’h [13] and Woess [43, Theorem 8.14].

We now introduce some basic tools for our later computations. The main
concept we want to use is the technique of generating functions, which are
power series with certain probabilities appearing as their coefficients.
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CHAPTER 1. GRAPHS AND RANDOM WALKS

Definition 1.4 (Green Function). Let x, y ∈ VG, z ∈ C. The Green

function associated with the random walk on G is defined as

GG(x, y|z) :=
∑

n≥0

p
(n)
G

(x, y) zn.

Note the following properties of Green functions:

1. If the random walk on G is irreducible and z is real bigger than zero,
then the power series GG(x, y|z) either converge or diverge simultane-
ously for all x, y ∈ VG. See Woess [43, Lemma 1.7].

2. For |z| < 1,
∑

y∈VG
GG(x, y|z) = 1/(1 − z) for every x ∈ VG.

Definition 1.5 (Generating Functions). Let x, y ∈ VG, z ∈ C and denote
by

Ty := inf
{
n ∈ N0 | Yn = y

}
∈ N0 ∪ {∞},

T̂y := inf
{
n ∈ N | Yn = y

}
∈ N ∪ {∞} respectively,

the stopping time of the first visit to y, the stopping time of the first return to
y respectively. We define the following generating functions associated with
the random walk on G:

1. First visit generating function:

FG(x, y|z) :=
∑

n≥0

Px[Ty = n] zn.

2. First return generating function:

UG(x, y|z) :=
∑

n≥1

Px

[
T̂y = n

]
zn.

3. Last exit generating function:

LG(x, y|z) :=
∑

n≥0

Px

[
T̂x > n, Yn = y

]
zn.

Note that the following simple properties of these generating functions hold:

1. In particular, we have FG(x, x|z) = 1 and FG(x, y|1) = Px[Ty <∞].

2. We have UG(x, y|z) = FG(x, y|z), if x 6= y.

3. It is LG(x, x|z) = 1 for all x ∈ VG and all z ∈ C.

The following lemma shows the relations between these generating functions:
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1.2. RANDOM WALKS ON GRAPHS

Lemma 1.6. Let w, x, y ∈ VG and z ∈ C. Then

(i) GG(x, x|z) = 1
1−UG(x,x|z) ,

(ii) GG(x, y|z) = FG(x, y|z) ·GG(y, y|z),

(iii) GG(x, y|z) = GG(x, x|z) · LG(x, y|z),

(iv) If each path from w to y has to pass through x, then
FG(w, y|z) = FG(w, x|z) · FG(x, y|z) and
LG(w, y|z) = LG(w, x|z) · LG(x, y|z).

Proof. For the proof of (i) and (ii), see Woess [43, Lemma 1.13]. Equation
(iii) is obtained by conditioning with respect to the last visit to x before
finally walking to y. Statement (iv) is obtained by conditioning with respect
to the first/last visit to x, which must be visited before finally walking
to y.

9
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Chapter 2

Free Products of Graphs

In this chapter, we sketch the mathematical basics for the following chapters:
we give an introduction to free products of graphs, lift random walks from
single graphs to a random walk on their free product and exhibit the basic
properties of the new random walk. Our aim is to show existence of the rate
of escape for various length functions on the free product of graphs, and to
give formulas for it.

2.1 The Free Product of Graphs

We now explain how to construct in a natural way a new graph from
some given ones; compare with Woess [43, 9.C]. Let I := {1, . . . , r} ⊆ N,
where r ≥ 2. Suppose we are given a finite family of non-trivial graphs
(Xi)i∈I =

(
(Vi, Ei)

)
i∈I with disjoint vertex sets and corresponding root ver-

tices oi. For i ∈ I, we write V ×
i := Vi \ {oi}. The free product

X := (V,E) := X1 ∗X2 ∗ · · · ∗Xr

is constructed as follows:

• The vertices V of X are all finite ‘words’ with letters, also called blocks,
from V ×

i , i ∈ I, such that no two successive letters come from the same
Vi, that is,

V =
{
x1x2 . . . xn

∣∣∣ n ∈ N, xj ∈
⋃

i∈I

V ×

i , xk ∈ Vl ⇒ xk+1 /∈ Vl

}
∪
{
o
}
. (2.1)

The empty word is denoted by o and describes the root of X. If
u = u1 . . . um ∈ V and v = v1 . . . vn ∈ V with um ∈ Vi, v1 /∈ Vi, then
uv stands for the concatenation as words. We define uo = ou = u for
all u ∈ V and we regard each Vi as a subset of V , identifying each oi
with o. In the sequel, we will use the representation of vertices in V
as in (2.1).

13



CHAPTER 2. FREE PRODUCTS OF GRAPHS

• Neighbourhood in X is given as follows: if (x, y) ∈ Ei, i ∈ I, then
(ux, uy) ∈ E for all u = u1 . . . um ∈ V with um /∈ Vi.

To visualize this, a copy of each Xi is attached at o, which is identified with
oi, and at each vertex x of Xi copies of all other graphs Xj , j 6= i, are
attached, where x plays the role of oj of the copy of Xj . This construction
is then iterated. Figure 2.1 illustrates (part of) the graph structure of the
free product of three graphs.

G1

G1

G1

G3 G3

G2

G2

G2

G2

o

Z n

Figure 2.1: Free Product of G1 ∗ G2 ∗ G3 and Random Walk on it

We now introduce further definitions:

Definition 2.1 (Vertex Type). Let x = x1 . . . xm ∈ V \{o} with xm ∈ Vi,
i ∈ I. Then the vertex type of x is defined as τ(x) := i. Additionally, we set
τ(o) := 0.

An extension of length functions on the Vi to a length function on V is
defined as follows:

Definition 2.2 (Length Function). If we are given length functions li on
Xi, then the associated length function on X is the function l : V → R≥ with
l(o) = 0 and

l(x1 . . . xm) =

m∑

j=1

lτ(xj)(xj) for every x1 . . . xm ∈ V \ {o}.

14



2.2. RANDOM WALK ON THE FREE PRODUCT

Examples 2.3:

1. Let li(y) = 1 for every i ∈ I and all y ∈ V ×
i . Then l(x1 . . . xm) = m

for all x = x1 . . . xm ∈ V \ {o}. This number is called the block length

of x and is denoted by `(x).

2. Suppose we are given a metric di(·, ·) on the graph Xi for all i ∈ I.
For every vertex x1 . . . xm ∈ V \ {o}, the associated length function is
l(x1 . . . xm) =

∑m
j=1 dτ(xj)(oτ(xj ), xj), which is also a metric.

3. Let li(y) be the length of a shortest path from oi to y ∈ Vi, i ∈ I. Then
the associated length function’s value l(x) is the minimal length of a
path inside X from o to x ∈ V . It is called the minimal path length of x
and is denoted by |x|. Observe that this is in general not the length of
a shortest path from x to o, as we regard graphs with oriented edges;
e.g., the case (x, y) ∈ E1, but (y, x) /∈ E1 may occur.

We conclude this section with further notation. For y ∈ Vi, i ∈ I, the set of
successors S(y) of y is denoted by

S(y) :=
{
y′ ∈ Vi

∣∣ (y, y′) ∈ Ei
}

and the set of predecessors P(y) of y is denoted by

P(y) :=
{
y′ ∈ Vi

∣∣ (y′, y) ∈ Ei
}
.

Moreover, if k ∈ N0 and x = x1 . . . xm ∈ V \ {o}, then the projection onto

the first k blocks is defined as

x(k) :=

{
o, if k = 0

x1 . . . xmin{k,m}, if k > 0
.

We also write x⊥ := x(`(x)−1) = x1 . . . xm−1, if x 6= o. The projection onto

the last block is

x̃ :=

{
xm, if x 6= o

o, if x = o
.

The cone with root y ∈ V is defined as

Cy :=
{
w ∈ V

∣∣∣ w(`(y)) = y
}
.

2.2 Random Walk on the Free Product

We construct a random walk on the free product X arising from random
walks on the single factors Xi. Suppose we are given random walks on the

15



CHAPTER 2. FREE PRODUCTS OF GRAPHS

graphs Xi, i ∈ I, with transition matrices Pi in the sense of Section 1.2.

We use the notation pi(x, y) and p
(n)
i (x, y), x, y ∈ Vi, for the corresponding

single and n-step transition probabilities. Without loss of generality we may
assume that all Pi are of nearest neighbour type, as we do not assume local
finiteness. Moreover, for sake of simplicity, we assume also pi(x, x) = 0 for
all i ∈ I and x ∈ Vi. We write Gi(x, y|z), Fi(x, y|z), Ui(x, y|z) and Li(x, y|z)
for the Green function, first visit/return and last exit generating functions
associated with the random walk on Xi.

We lift Pi to a non-irreducible transition matrix P̄i =
(
p̄i(x, y)

)
x,y∈V on

the vertex set V : if v, w ∈ Vi and u ∈ V with τ(u) 6= i, then the single
step transition probabilities are given by p̄i(uv, uw) := pi(v, w), otherwise
p̄i(x, y) := 0. Choose 0 < αi ∈ R for every i ∈ I such that

∑
i∈I αi = 1.

Then we obtain a new transition matrix on V given by

P :=
∑

i∈I
αiP̄i ;

compare with Woess [43, 9.C]. The random walk is a nearest neighbour
random walk, since all Pi describe nearest neighbour random walks. The
associated single and n-step transition probabilities are denoted by p(x, y)
and p(n)(x, y) for x, y ∈ V. The transition probabilities are sketched for a
sample graph in Figure 2.2. The random walk governed by P is described
by the sequence of random variables (Zn)n∈N0 , where Zn ∈ V is the random
vertex at time n. Initially, Z0 = o in most cases. Furthermore, denote by Px

the probability measure on V N0 that governs the random walk starting at
x ∈ V . We omit the index X in the notation of the corresponding generating
functions, that is, we write G(x, y|z) = GX(x, y|z), F (x, y|z) = FX(x, y|z),
U(x, y|z) = UX(x, y|z) and L(x, y|z) = LX(x, y|z), where x, y ∈ V, z ∈ C.

Note that we make the basic assumption that G(o, o|z) has radius of
convergence bigger than 1. This implies transience of our random walk on X.

s

t

v
wu

y

x

Vertex types: τ(u) = τ(v) = τ(w) = 1,
τ(s) = τ(t) = 2, τ(x) = τ(y) = 3.

Edge Transition probabilities

(v,w) α1 p1(v, w)
(v,u) α1 p1(v, u)
(v,s) α2 p2(v, s)
(v,t) α2 p2(v, t)
(v,x) α3 p3(v, x)
(v,y) α3 p3(v, y)

Figure 2.2: Transition probabilities
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2.3. PROPERTIES OF GENERATING FUNCTIONS

Thus, we may exclude the case r = 2 = cardV1 = cardV2 (cardM is the
cardinality of a set M), which reduces the free product to a line. Some
criteria for this convergence property are given in Section 2.5.

2.3 Properties of Generating Functions

In this section, we present some important properties of the generating func-
tions associated with the random walk on X. We show the correspondence
between the first visit/last exit generating functions of the random walks on
X and Xi. Therefore define for i ∈ I and z ∈ C

H̄i(z) :=
∞∑

n=2

Po[To = n,Z1 /∈ Vi] z
n and ξi(z) :=

αiz

1 − H̄i(z)
;

see Woess [43, 9.C]. Note that H̄i(1) is the probability of starting at x ∈ Vi
and ever returning to x without visiting any neighbour in S(x) before reach-
ing x. The number ξi(1) is the probability of starting at x ∈ Vi and ever
visiting any neighbour in S(x). Observe that for real z > 0 the functions
H̄i(z) and ξi(z) are strictly increasing inside their radii of convergence.

Lemma 2.4. Let R be the radius of convergence of G(o, o|z) and for i ∈ I
let Ri be the radius of convergence of Gi(oi, oi|z). If 0 ≤ z < R, then
0 ≤ ξi(z) < Ri.

Proof. See Woess [43, Proposition 9.18]; the proof does not require irre-
ducibility.

Note that the last lemma implies that ξi(z), and thus H̄i(z) have radii of
convergence bigger than 1 for all i ∈ I, as we assume R > 1. We can now
state the following essential equation:

Proposition 2.5. Let i ∈ I, x, y ∈ Vi and z ∈ C. Then

F (x, y|z) = Fi
(
x, y|ξi(z)

)
.

Proof. See Woess [43, Proposition 9.18 (c)]; the proof does not require irre-
ducibility.

By decomposing w.r.t. the first step we can write:

H̄i(z) =
∑

j∈I\{i}

∑

s∈S(oj)

(
αj · pj(oj , s) · z · Fj

(
s, oj |ξj(z)

))
. (2.2)

Obviously, it is H̄i(1) ≤ 1− αi < 1 for all i ∈ I. By continuity of H̄i(z), the
function 1/(1 − H̄i(z)) also has radius of convergence bigger than 1.

17



CHAPTER 2. FREE PRODUCTS OF GRAPHS

Lemma 2.6. ξi := ξi(1) < 1 for all i ∈ I.

Proof. Let Hi(z) := U(o, o|z) − H̄i(z). By transience, we have

U(o, o|1) =
∑

i∈I
Hi(1) < 1.

Furthermore,

Hi(1) = αi
∑

s∈S(oi)

pi(oi, s)F (s, o|1)︸ ︷︷ ︸
≤1

≤ αi.

Hence,

ξi =
αi

1 −∑j∈I\{i}Hj(1)
≤ αi

1 −∑j∈I\{i} αj
=

αi
1 − (1 − αi)

= 1.

Observe that if Hi(1) < αi for some i ∈ I, then ξj < 1 for all j ∈ I \ {i}.
Assume Hi(1) = αi for some i ∈ I. Then H̄i(1) = U(o, o|1)−Hi(1) < 1−αi
and thus there is j ∈ I, j 6= i, such that Hj(1) < αj. Thus ξi < 1. By

Hi(1) = αi
∑

s∈S(oi)

pi(oi, s)F (s, o|1) = αi

follows F (s, o|1) = 1 for all s ∈ S(oi). But now we obtain the contradiction

1 = F (s, o|1) = Fi(s, oi|ξi) < 1,

as ξi < 1 and Fi(s, oi|z) is strictly increasing for real z > 0 and Fi(s, oi|1) ≤ 1.
This finishes the proof.

Remark: By Lemma 2.6 and continuity of the function ξi(z), the power
series Gi

(
oi, oi|ξi(z)

)
and the function 1/

(
1 − ξi(z)

)
, i ∈ I, have radii of

convergence bigger than 1.

There is an analogous important relation between the last exit generating
functions associated with the random walks on the factors Xi and on X:

Proposition 2.7. Let i ∈ I, x, y ∈ Vi and z ∈ C. Then

L(x, y|z) = Li
(
x, y|ξi(z)

)
.

Proof. The proof works analogously to the proof of Proposition 2.5; compare
with Woess [43, Proof of Prop. 9.18 (c)]. The basic idea is as follows: we look
at all walks [x = x0, x1, . . . , xn = y] inside Xi starting in x and reaching y
without returning to x during this walk. Writing V ⊥

i := {x ∈ V | x(1) /∈ V ×
i },

we allow at each vertex xk, 1 ≤ k ≤ n, detours into the subgraph

X⊥
i :=

(
V ⊥
i , E ∩ (V ⊥

i × V ⊥
i )
)
,
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which is attached at xk, with return to xk.

Define the stopping time s:

s(0) = 0, s(k) = min
{
n > s(k − 1) | (Zn−1, Zn) ∈ Ei

}
.

Thus, we have Zs(k)−1 = Zs(k−1), if s(k) < ∞. Now, Pu[Zn = u, s(1) > n]
is the probability of starting and returning to u ∈ Vi after n steps without
making steps inside Xi which are subject to αipi(u, ·). The probabilities
above are the same for all u ∈ Vi. The generating function associated with
the first visit to u without making steps inside Xi equals H̄i(z). Thus,

∞∑

n=0

Pu[Zn = u, s(1) > n] zn =
1

1 − H̄i(z)
.

Now let n ≥ 1 and x1, . . . , xn ∈ Vi and

w(x1, . . . , xn) := E

(
zs(n) �

[s(1)=1,Zs(k)=xk (k=1,...,n)]

∣∣∣ Z0 = x
)
· 1

1 − H̄i(z)
.

We claim that

w(x1, . . . , xn) = ξi(z)
n

n∏

k=1

pi(xk−1, xk).

For n = 1 we obtain:

w(x1) = z · Px[Z1 = x1, s(1) = 1] · 1

1 − H̄i(z)

= αi z pi(x, x1) ·
1

1 − H̄i(z)
= ξi(z) pi(x, x1).

By induction, we conclude:

w(x1, . . . , xn) = w(x1, . . . , xn−1) · αi z pi(xn−1, xn) ·
1

1 − H̄i(z)

= w(x1, . . . , xn−1) · ξi(z) · pi(xn−1, xn)

= ξi(z)
n

n∏

k=1

pi(xk−1, xk).

Let (Yn)n∈N0 be a random walk on Xi governed by Pi. Then we get for
x, y ∈ Vi with x 6= y:

L(x, y|z) =

∞∑

n=1

∑

x1,...,xn−1∈Vi\{x}
w(x1, . . . , xn−1, y)

=

∞∑

n=1

ξi(z)
n

Px

[
∀j ∈ {1, . . . , n− 1} : Yj 6= x, Yn = y

]

= Li
(
x, y|ξi(z)

)
.

If x = y, then L(x, x|z) = 1 = Li
(
x, x|ξi(z)

)
.
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We finish this section with an important corollary:

Corollary 2.8. Let x = x1 . . . xm ∈ V \ {o}. Then

L(o, x|z) =

m∏

j=1

Lτ(xj)

(
oτ(xj), xj

∣∣ξτ(xj)(z)
)
.

Proof. By the tree-like structure of the graph of the free product, the random
walk starting at o has to pass through x1 . . . xj for all 1 ≤ j ≤ m. Each such
point is visited for a last time, before finally walking in direction to x. Due
to the structure of X, the probability of walking in n steps from x0 . . . xj−1

to x1 . . . xj, where x0 = o, without returning to x0 . . . xj−1 during this walk
equals the probability of walking in n steps from o to xj without a return
to o during this walk. Applying Lemmas 1.6 and Proposition 2.7, we obtain

L(o, x|z) =
m∏

j=1

L(x0 . . . xj−1, x0 . . . xj|z) =
m∏

j=1

Lτ(xj)

(
oτ(xj), xj |ξτ(xj)(z)

)
.

2.4 Limit of the Random Walk

As we have assumed transience of the random walk on X, the random walk
escapes to infinity. We shall now investigate the route of escape. The infor-
mation about the route’s structure is the main tool for further computations.
Therefore the next goal is to show that `(Zn) tends almost surely to infinity
for n→ ∞. Define for x ∈ V, i ∈ I \ {τ(x)} and S ⊆ Vi

xS :=
{
xy | y ∈ S

}
.

Then we obtain:

Lemma 2.9. Po

[
Zn ∈ xVi holds for infinitely many n

]
= 0.

Proof. By Lemma 1.6 and Corollary 2.8,
∑

n≥0

Po[Zn ∈ xVi] =
∑

y∈Vi

G(o, xy|1)

=
∑

y∈Vi

G(o, o|1) · L(o, x|1) · Li(oi, y|ξi)

= G(o, o|1) · L(o, x|1) ·
∑

y∈Vi

Gi(oi, y|ξi)
Gi(oi, oi|ξi)

=
G(o, o|1) · L(o, x|1)

Gi(oi, oi|ξi)
∑

n≥0

∑

y∈Vi

p
(n)
i (oi, y)ξ

n
i

=
G(o, o|1) · L(o, x|1)

Gi(oi, oi|ξi)
· 1

1 − ξi
<∞.

20



2.4. LIMIT OF THE RANDOM WALK

The Borel-Cantelli lemma implies the proposed equation.

Finally, we are able to specify how the random walk on X escapes to infinity.
Define

V∞ :=
{
x1x2 . . .

∣∣ ∀j ∈ N : ij ∈ I, xj ∈ V ×
ij
, ij 6= ij+1

}
,

the set of all infinite words x1x2 . . . in which each of the letters xj belongs
to
⋃
i∈I V

×
i and no two consecutive letters come from the same V ×

i . For

x = x1x2 · · · ∈ V∞, the projection x(m) of x onto the first m blocks is given
by x1 . . . xm. Then we have:

Proposition 2.10. `(Zn) tends Po-a.s. to infinity if n→ ∞. Furthermore,
there exists a V∞-valued random variable Z∞, such that

lim
n→∞

Zn = Z∞ Po − a.s.,

with convergence in the sense that the length of the common prefix of Zn
and Z∞ tends to infinity.

Proof. We prove by induction that for each m ∈ N there is almost surely
some nm ∈ N with `(Znm) = m and `(Zn) > m for all n > nm. By Lemma
2.9, the random walk visits the vertex set

⋃
i∈I Vi finitely often Po-a.s..

Therefore there is almost surely an index n1 ∈ N such that

Zn1 ∈
⋃

i∈I
Vi and Zn /∈

⋃

i∈I
Vi for all n > n1.

Thus `(Zn1) = 1 and `(Zn) > 1 for all n > n1. Assume now that `(Znm) = m
and `(Zn) > m for all n > nm. Again by Lemma 2.9, the random walk visits
the vertex set

⋃
i∈I\{κ} ZnmVi finitely often Po-a.s., where κ := τ(Znm). Then

there is almost surely some nm+1 ∈ N such that

Znm+1 ∈
⋃

i∈I\{κ}
ZnmVi and Zn /∈

⋃

i∈I\{κ}
ZnmVi for all n > nm+1.

Thus `(Znm+1) = m + 1 and `(Zn) > m + 1 for all n > nm+1. This yields
that `(Zn) tends almost surely to infinity if n→ ∞.
Obviously, the sequence (Zn)n∈N0 converges to an infinite word valued in

V∞ with Z
(m)
∞ = Znm for all m ∈ N.

Remark: A consequence of the last proposition is the fact that

card
{
m ∈ N

∣∣ τ(Z(m)
∞ ) = i

}
= ∞ Po − a.s.

for every i ∈ I: consider V as the free product Vi∗(V1∗· · ·∗Vi−1∗Vi+1∗· · ·∗Vr)
and apply the last proposition.
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We now want to investigate the speed of the escape of the random walk on
X. For this purpose, we will consider the rate of escape w.r.t. different length
functions. Let l be a length function on X. If there is a number ` ∈ R≥,
λ ∈ R≥ respectively, l ∈ R≥ respectively, such that

` = lim
n→∞

1

n
`(Zn) Po − a.s.,

λ = lim
n→∞

1

n
|Zn| Po − a.s. respectively,

l = lim
n→∞

1

n
l(Zn) Po − a.s. respectively,

then ` is called the rate of escape w.r.t. the block length, λ the rate of escape

w.r.t. the minimal path length and l the rate of escape w.r.t. l.

We will show existence of these almost sure, constant limits and also give
formulas for their computation: in Chapter 3 we will derive three formulas
for the rate of escape w.r.t. the block length by three different techniques.
In Chapter 4, two of the presented techniques are extended to compute the
rate of escape w.r.t. the minimal path length, while one of these methods
can be extended to arbitrary length functions, if card Vi <∞ for every i ∈ I.

2.5 Convergence Criteria for Green Functions

In the final section of this chapter we want to give three criteria such that
the radius of convergence of the Green function of the random walk on a
free product of graphs is bigger than 1 (convergence property). Recall that
we have assumed this convergence property in our above computations.

A first class of random walks on free products fulfilling the necessary con-
vergence property is the class of uniformly irreducible, strongly reversible
random walks, when assuming that each Xi has bounded vertex degree. The
random walk on the free product X = (V,E) is called uniformly irreducible,
if there are N ∈ N and ε > 0 such that

(x, y) ∈ E implies p(n)(x, y) ≥ ε for some n ≤ N.

As we consider only nearest neighbour random walks on X, our random
walk is uniformly irreducible, if the single step transition probabilities can
be bounded from below by some ε > 0. The random walk on X is called
strongly reversible, if there is a measure m : V → [a; b] with 0 < a, b ∈ R and

m(x) · p(x, y) = m(y) · p(y, x) for all x, y ∈ V.

Observe that reversible random walks need symmetric edge sets E, that is,
(x, y) ∈ E implies (y, x) ∈ E for all x, y ∈ V, as we consider only nearest
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neighbour random walks on X. For instance, the random walk P on X is
strongly reversible, if each Xi is transitive and each Pi is simple random
walk on Xi.

The following theorem states the convergence property of uniformly irre-
ducible, strongly reversible random walks on free products:

Theorem 2.11. If each Xi has bounded vertex degree and if the random walk
P on X is uniformly irreducible and strongly reversible, then the associated
Green function G(o, o|z) has radius of convergence bigger than 1.

Proof. The claim follows from Woess [43, Theorems 10.6, 10.10]; compare
also with Pittet [33] and Mohar [29].

The following lemma proposes a next class of free products fulfilling the
convergence property. Recall the assumption pi(x, x) = 0 for all x ∈ Vi.

Lemma 2.12. If p
(n)
i (oi, oi) = 0 holds for some i ∈ I and for all n ∈ N,

that is, the random walk Pi can not walk from any vertex in Vi to oi, then
G(o, o|z) has radius of convergence bigger than 1.

Proof. If i ∈ I such that p
(n)
i (oi, oi) = 0 for all n ∈ N, then each path inside

X from o to o has to be performed outside of V ×
i . Thus we obtain

G(o, o|z) =
∑

n≥0

p(n)(o, o)︸ ︷︷ ︸
≤(1−αi)n

zn ≤
∑

n≥0

(
(1 − αi)︸ ︷︷ ︸

<1

z
)n

and the proposed lemma follows.

A final presented class of free products fulfilling the necessary convergence
property of the Green function are free products of Cayley graphs of finite
or countable groups (apart from Z/2Z ∗ Z/2Z), where the random walk on
these free products arise from probability measures on the generators of the
single groups. We will discuss in detail this special case in Section 3.3.
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Chapter 3

Rate of Escape w.r.t. the
Block Length

In this chapter, we investigate the rate of escape w.r.t. the block length for
the random walk on the free product X = X1 ∗ · · · ∗Xr, that is, we want to
show existence of a constant ` ∈ R≥ such that

` = lim
n→∞

1

n
`(Zn) almost surely,

and we derive formulas for `. For this purpose, we elaborate three different
techniques to compute this limit. These techniques lead to formulas with
rather different appearance, which at first glance do not seem to be related
to each other. The plan for this chapter is as follows: using the notations of
the previous chapter we investigate in Section 3.1 the escape of the random
walk on X to infinity as precisly as possible. By purely probabilistic rea-
soning, we prove existence of ` and get a formula for it. In Section 3.2, we
compute the proposed limit by dealing with double generating functions and
an application of a theorem of Sawyer and Steger [37]. The third approach
for the computation of ` in Section 3.3 works only whenX is the free product
of Cayley graphs of groups so that X itself becomes the Cayley graph of the
free product of those groups. This approach investigates the behaviour of
the limit process of (Zn)n∈N0 and uses the observations for the computation
of `. In Section 3.4, we give a formula for the partial rate of escape w.r.t.
the block length, that is, how frequently different copies of Xi, where i ∈ I
is fixed, are visited when walking to infinity. Section 3.5 shows that the ran-
dom walk trajectory is logarithmically quite close to the path described by
its limit process. Finally, Section 3.6 presents sample computations.
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3.1 Computation by Exit Times

In this section, we investigate the random walk onX in detail, prove existence
of ` and derive a formula for it. The basic idea behind the following technique
was motivated by the paper of Nagnibeda and Woess [30, Section 5].

3.1.1 Exit Times

We introduce some random variables:

Definition 3.1 (Exit Time, Exit Point). Let k ∈ N0. Then the exit time

w.r.t. the block length k is

ek := min
{
m ∈ N

∣∣∣ ∀n ≥ m : Z(k)
n constant

}
.

In particular, e0 = 0. The exit point w.r.t. the block length k is Wk := Zek
.

Thus, ek is the first instant from which onwards the first k blocks remain
constant, and Wk = x if and only if at time ek − 1 the random walk is at
state x1 . . . xk−1s with some s ∈ P(xk), at time ek at state x, and thereafter
remains in the cone Cx.

As Zn converges almost surely to a random variable Z∞ valued in V∞, we
have ek → ∞ for k → ∞ almost surely.

Definition 3.2 (Increment). Let k ∈ N. Then the k-th increment is given
by ik := ek − ek−1.

Definition 3.3 (Maximal Exit Time). Let n ∈ N0. Then the random
variable of the maximal exit time at time n is defined as

k(n) := max
{
k ∈ N0

∣∣ ek ≤ n
}
.

3.1.2 Exit Points and Increments

In this subsection we investigate the stochastic process
(
W̃k, ik, τk

)
k∈N

, where
τk := τ(Wk). We will show that this process is a positive recurrent Markov
chain.

First, we introduce another generating function. Define for i, j ∈ I with
i 6= j, y ∈ Vj and n ∈ N0

k
(n)
i (o, y) := Po

[
∀l ∈ {0, . . . , n} : Zl /∈ V ×

i , Zn = y
]

and the corresponding generating function

Ki(o, y|z) :=
∑

n≥0

k
(n)
i (o, y) zn =

∑

n≥0

H̄i(z)
n · L(o, y|z) =

L(o, y|z)
1 − H̄i(z)

. (3.1)

We start with the following proposition:
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Proposition 3.4. The stochastic process (Wk, ik)k∈N is a Markov chain
with transition probabilities

Po

[
Wk+1 = wk+1, ik+1 = nk+1

∣∣Wk = wk, ik = nk
]

=
1 − ξτ(y)

1 − ξτ(wk)
·
∑

s∈P(y)

[
k

(nk+1−1)
τ(wk) (o, s) · p(s, y)

]

for wk = x1 . . . xk ∈ V , wk+1 = wky, where y ∈ V ×
l with l 6= τ(wk), and

nk, nk+1 ∈ N.

Proof. Define V̄i =
⋃
j∈I\{i} V

×
j . Let w0 := o, w1 = g1 ∈ ⋃

i∈I V
×
i and

wj = wj−1gj with gj ∈ V̄τ(wj−1) for 2 ≤ j ≤ k.

For j ∈ {1, . . . , k} the inclusion of events [Wj+1 = wj+1] ⊆ [Wj = wj ] holds,
as wj+1 determines the element wj uniquely. Let n1, . . . , nk+1 ∈ N. We write
for m ∈ {k, k + 1}

[
Wm

1 = wm1 , i
m
1 = nm1

]
:=
[
∀j ∈ {1, . . . ,m} : Wj = wj, ij = nj

]
.

This event can be described as follows: start at o, walk in n1 − 1 steps to a
predecessor of w1 inside Xτ(w1), then walk to w1, then stay inside Cw1 and
walk in n2 − 1 steps to a vertex in w1P(g2), from there to w2, and so on.
With ns1 :=

∑s
j=1 nj, we obtain more formally:

Po

[
W k

1 = wk1 , i
k
1 = nk1

]

= Po

[
∀λ ∈ {1, . . . , k}∀j ∈ {1, . . . , nλ − 2} : Z

nλ−1
1 +j ∈ Cwλ−1

,

Znλ
1−1 ∈ wλ−1P(gλ), Znλ

1
= wλ;∀j′ ∈ N : Znk

1+j′ ∈ Cwk

]

= Po

[
∀λ ∈ {1, . . . , k}∀j ∈ {1, . . . , nλ − 2} :

Z
nλ−1

1 +j ∈ Cwλ−1
, Znλ

1−1 ∈ wλ−1P(gλ), Znλ
1

= wλ

]

·Pwk

[
∀n ≥ 1 : Zn ∈ Cwk

]

= Po




∀λ ∈ {1, . . . , k}∀j ∈ {1, . . . , nλ − 2} :
Z
nλ−1

1 +j ∈ Cwλ−1
, Znλ

1−1 ∈ wλ−1P(gλ),

Znλ
1

= wλ


 ·
(
1 − ξτ(wk)

)
.

Analogously,

Po

[
W k+1

1 = wk+1
1 , ik+1

1 = nk+1
1

]

= Po

[
∀λ ∈ {1, . . . , k + 1}∀j ∈ {1, . . . , nλ − 2} : Z

nλ−1
1 +j ∈ Cwλ−1

,

Znλ
1−1 ∈ wλ−1P(gλ), Znλ

1
= wλ;∀j′ ∈ N : Z

nk+1
1 +j′

∈ Cwk+1

]

= Po

[
∀λ ∈ {1, . . . , k}∀j ∈ {1, . . . , nλ − 2} :

Z
nλ−1

1 +j ∈ Cwλ−1
, Znλ

1−1 ∈ wλ−1P(gλ), Znλ
1

= wλ

]

·Pwk

[
∀j ∈ {1, . . . , nk+1 − 2} : Zj ∈ Cwk

,
Znk+1−1 ∈ wkP(y), Znk+1

= wky

]
·
(
1 − ξτ(y)

)
.
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Thus we obtain the conditional probabilities:

Po

[
Wk+1 = wk+1, ik+1 = nk+1

∣∣ W k
1 = wk1 , i

k
1 = nk1

]

=
Po

[
W k+1

1 = wk+1
1 , ik+1

1 = nk+1
1

]

Po

[
W k

1 = wk1 , i
k
1 = nk1

]

=
1 − ξτ(y)

1 − ξτ(wk)
· Pwk

[
∀j ∈ {1, . . . , nk+1 − 2} : Zj ∈ Cwk

,
Znk+1−1 ∈ wkP(y), Znk+1

= wky

]

=
1 − ξτ(y)

1 − ξτ(wk)
·
∑

s∈P(y)

Pwk

[
∀j ∈ {1, . . . , nk+1 − 2} : Zj ∈ Cwk

,
Znk+1−1 = wks, Znk+1

= wk+1

]

=
1 − ξτ(y)

1 − ξτ(wk)
·
∑

s∈P(y)

[
k

(nk+1−1)
τ(wk) (o, s) · p(s, y)

]
.

Therefore (Wk, ik)k∈N is a Markov chain with the proposed transition prob-
abilities.

As we have seen in the last proposition, the transition probabilities of the
stochastic process (Wk, ik)k∈N depend in the present only on the vertex type
of Wk and in the future only on y = w̃k+1 and nk+1. Hence, the stochastic
process

(
W̃k, ik, τk

)
k∈N

is also a Markov chain on the state space

A :=
{

(y, n, j)
∣∣∣ j ∈ I, y ∈ V ×

j , n ∈ N such that p
(n)
j (o, y) > 0

}

with transition probabilities

q
(
(x,m, i), (y, n, j)

)
=

{
0, if i = j
1−ξj
1−ξi ·

∑
s∈P(y)

[
k

(n−1)
i (o, s) · p(s, y)

]
, if i 6= j

.

For reason of convenience, we set q
(
(x,m, i), (y, n, j)

)
= 0, if j ∈ I, y ∈ Vj ,

but (y, n, j) /∈ A.

Remarks: The process
(
W̃k, ik, τk

)
k∈N

is obviously irreducible as ξi < 1 for

all i ∈ I. As τk is induced by W̃k, τk is superflous in the stochastic process(
W̃k, ik, τk

)
k∈N

, but for sake of simplicity we do not drop it.

An invariant probability measure on A is a probability measure π : A → [0; 1]
with ∑

a∈A
π(a) q(a, b) = π(b)

for all b ∈ A. We now want to show existence of an invariant probability
measure for the stochastic process on A. For this purpose, consider the
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stochastic process (τk)k∈N. As the transition probabilities of
(
W̃k, ik, τk

)
k∈N

depend in the present only on the vertex type τk, the sequence (τk)k∈N is
also an irreducible Markov chain on the finite state space I with transition
probabilities

q̂(i, j) :=
∑

y∈V ×

j

∑

n≥1

q
(
(x,m, i), (y, n, j)

)

for i, j ∈ I with i 6= j. It is q̂(i, i) = 0. Note that x ∈ Vi and m ∈ N can
be chosen arbitrarily such that (x,m, i) ∈ A. Thus, (τk)k∈N possesses an
invariant probability measure ν, that is, for every j ∈ I

∑

i∈I
ν(i) · q̂(i, j) = ν(j) (3.2)

holds. We now define for j ∈ I, y ∈ V ×
j and n ∈ N:

π(y, n, j) :=
∑

i∈I
ν(i) · q

(
(x,m, i), (y, n, j)

)
. (3.3)

Lemma 3.5. π is an invariant probability measure of the stochastic process(
W̃k, ik, τk

)
k∈N

.

Proof. We have to show for all (y, n, j) ∈ A:

∑

(x,m,i)∈A
π(x,m, i) · q

(
(x,m, i), (y, n, j)

)
= π(y, n, j).

Choose for each i ∈ I some xi ∈ V ×
i and mi ∈ N such that (xi,mi, i) ∈ A.

We prove the claim:

∑

(x,m,i)∈A
π(x,m, i) · q

(
(x,m, i), (y, n, j)

)

=
∑

(x,m,i)∈A

∑

k∈I
ν(k) · q

(
(xk,mk, k), (x,m, i)

)
· q
(
(x,m, i), (y, n, j)

)

=
∑

i∈I
q
(
(xi,mi, i), (y, n, j)

)
·
∑

k∈I
ν(k) ·

∑

x∈V ×

i

∑

m∈N

q
(
(xk,mk, k), (x,m, i)

)

︸ ︷︷ ︸
=q̂(k,i)︸ ︷︷ ︸

=ν(i)

= π(y, n, j) .

In particular,
(
W̃k, ik, τk

)
k∈N

is positive recurrent. In Subsection 3.1.4, we
will present a formula for ν.
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3.1.3 Rate of Escape w.r.t. the Block Length

In this section we finally derive a formula for `. Our main tool is the following
well-known theorem:

Theorem 3.6 (Ergodic Theorem for positive recurrent Markov
chains). Let (Yn)n∈N be an irreducible, positive recurrent Markov chain
on the state space S. Let µ be the invariant probability measure on S and
f : S → R such that ∑

x∈S
|f(x)|µ(x) <∞.

Then

1

k

k∑

l=1

f(Yl)
n→∞−−−→

∑

x∈S
f(x)µ(x) Pσ − a.s.

for any initial distribution σ.

Proof. E.g. see Bremaud [4, Chapter 3, Theorem 4.1].

We consider the function

g : A → N : (y, n, j) 7→ n.

An application of Theorem 3.6 provides

1

k

k∑

l=1

g
(
W̃l, il, τl

)
=

ek − e0

k
=

ek
k

k→∞−−−→
∫
g dπ Po − a.s.,

if
∫
g dπ <∞. Our aim in the sequel is now not only to show that

∫
g dπ is

finite, but also to give a formula for this integral. For this purpose, we need
the next three lemmas.

Lemma 3.7. Let i, j ∈ I with i 6= j. Then

∑

y∈Vj

Ki(o, y|z) =
1

1 − H̄i(z)
· 1

Gj
(
oj, oj |ξj(z)

) · 1

1 − ξj(z)
.

Proof. Applying equation (3.1) and Lemma 2.7, we get

∑

y∈Vj

Ki(o, y|z) =
∑

y∈Vj

L(o, y|z)
1 − H̄i(z)

=
1

1 − H̄i(z)

∑

y∈Vj

Lj
(
oj , y|ξj(z)

)
.
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Applying Lemma 1.6 yields:
∑

y∈Vj

Lj
(
oj , y|ξj(z)

)
=

1

Gj
(
oj, oj |ξj(z)

)
∑

y∈Vj

Gj
(
oj , y|ξj(z)

)

=
1

Gj
(
oj, oj |ξj(z)

)
∑

n≥0

(∑

y∈Vj

p
(n)
j (oj , y)

)

︸ ︷︷ ︸
=1

ξj(z)
n

=
1

Gj
(
oj, oj |ξj(z)

) · 1

1 − ξj(z)
.

Thus, we have proved the proposed equation.

Recall that 1/(1− H̄i(z)) and 1/(1− ξi(z)) have radii of convergence bigger
than 1. Thus, the same holds for the sum

∑
y∈Vj

Ki(o, y|z).
Lemma 3.8. Let i, j ∈ I with i 6= j. Then

∑

s∈P(oj)

Ki(o, s|z) pj(s, oj) =
Gj
(
oj, oj |ξj(z)

)
− 1(

1 − H̄i(z)
)
·Gj

(
oj , oj |ξj(z)

)
· ξj(z)

.

Proof. The proposed equation is obtained as follows:
∑

s∈P(oj)

Ki(o, s|z) pj(s, oj)

=
∑

s∈P(oj)

L(o, s|z)
1 − H̄i(z)

pj(s, oj)

=
1

1 − H̄i(z)

∑

s∈P(oj)

Gj
(
oj, s|ξj(z)

)

Gj
(
oj, oj |ξj(z)

) pj(s, oj)

=
1(

1 − H̄i(z)
)
·Gj

(
oj , oj |ξj(z)

)
∑

s∈P(oj)

Gj
(
oj , s|ξj(z)

)
ξj(z) pj(s, oj)

1

ξj(z)

=
Gj
(
oj , oj |ξj(z)

)
− 1(

1 − H̄i(z)
)
·Gj

(
oj , oj |ξj(z)

)
· ξj(z)

.

The radius of convergence of the term in the last lemma is bigger than 1, as
ξj(1) < 1 and the functions ξj(z) and 1/

(
1−H̄i(z)

)
have radii of convergence

bigger than 1.

Lemma 3.9. Let i, j ∈ I with i 6= j. Then

γi,j(z) :=
∑

n≥1

∑

y∈V ×

j

∑

s∈P(y)

k
(n−1)
i (o, s) · pj(s, y) · zn

has radius of convergence bigger than 1.
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Proof. We prove:
∑

n≥1

∑

y∈V ×

j

∑

s∈P(y)

k
(n−1)
i (o, s) · pj(s, y) · zn

=
∑

n≥1

∑

y∈Vj

∑

s∈P(y)

k
(n−1)
i (o, s) · pj(s, y) · zn

−
∑

n≥1

∑

s∈P(oj)

k
(n−1)
i (o, s) · pj(s, oj) · zn

=
∑

n≥1

∑

y∈Vj

k
(n−1)
i (o, y) zn −

∑

n≥1

∑

s∈P(oj)

k
(n−1)
i (o, s) · pj(s, oj) · zn

= z ·
∑

y∈Vj

Ki(o, y|z)
︸ ︷︷ ︸

(∗)

−z
∑

s∈P(oj)

Ki(o, s|z) · pj(s, oj)

︸ ︷︷ ︸
(∗∗)

. (3.4)

Lemmas 3.7 and 3.8 show that the sums (∗) and (∗∗) have radii of conver-
gence bigger than 1. Thus follows the claim of the lemma.

Now we are able to prove the following theorem:

Theorem 3.10.
∫
g dπ is finite.

Proof. We rewrite the integral:
∫
g dπ =

∑

(y,n,j)∈A
g(y, n, j)π(y, n, j)

=
∑

(y,n,j)∈A
n ·
∑

i∈I
ν(i) q

(
(x,m, i), (y, n, j)

)

=
∑

i∈I
ν(i) ·

∑

(y,n,j)∈A
n · q

(
(x,m, i), (y, n, j)

)

=
∑

i,j∈I,
i6=j

ν(i)αj
1 − ξj
1 − ξi

∑

n≥1

n
∑

y∈V ×

j

∑

s∈P(y)

k
(n−1)
i (o, s) · pj(s, y)

︸ ︷︷ ︸
(∗∗∗)

We now interpret the sum (∗ ∗ ∗) as a power series evaluated at 1:

∑

n≥1

n
∑

y∈V ×

j

∑

s∈P(y)

k
(n−1)
i (o, s) · pj(s, y) · zn−1

=
∂

∂z

[
∑

n≥1

∑

y∈V ×

j

∑

s∈P(y)

k
(n−1)
i (o, s) · pj(s, y) · zn

]

= γ′i,j(z).
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By Lemma 3.9, the sum γi,j(z) has radius of convergence Ri,j > 1. Hence,
the derivative of γi,j(z) has the same radius of convergence Ri,j > 1. Thus,
∂γi,j

∂z
(1) <∞ for all i, j ∈ I, i 6= j, proving that

∫
g dπ is finite.

Having shown finiteness of
∫
g dπ, we now exhibit a formula for this value.

We need the following lemma:

Lemma 3.11. For all i, j ∈ I with i 6= j,

γi,j(z) =
1

αi
· ξi(z)
ξj(z)

·
(

1(
1 − ξj(z)

)
·Gj

(
ξj(z)

) − 1

)
,

where Gj
(
ξj(z)

)
:= Gj

(
oj , oj |ξj(z)

)
.

Proof. This follows directly from the previous technical Lemmas 3.7 and 3.8
and equation (3.4):

γi,j(z) =
z(

1 − H̄i(z)
)
·Gj

(
ξj(z)

) ·
(

1

1 − ξj(z)
− Gj

(
ξj(z)

)
− 1

ξj(z)

)

=
1

αi
· ξi(z)
ξj(z)

· 1

Gj
(
ξj(z)

) ·
(

ξj(z)

1 − ξj(z)
−Gj

(
ξj(z)

)
+ 1

)

=
1

αi
· ξi(z)
ξj(z)

· 1

Gj
(
ξj(z)

) ·
(

1

1 − ξj(z)
−Gj

(
ξj(z)

))

=
1

αi
· ξi(z)
ξj(z)

·
(

1(
1 − ξj(z)

)
·Gj

(
ξj(z)

) − 1

)
.

We now obtain:

Corollary 3.12.

Λ :=

∫
g dπ =

∑

i,j∈I,
i6=j

ν(i) · αj ·
1 − ξj
1 − ξi

· γ′i,j(1).

�

Moreover, we have proved by applying the ergodic theorem for positive re-
current Markov chains:

Corollary 3.13.
ek
k

k→∞−−−→ Λ Po − a.s.

�
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Now convergence of `(Zn)/n for n→ ∞ will be shown and a formula for the
limit will be computed. For this purpose, we need the following observations:

1. 0 ≤ `(Zn) − `(Wk(n)) ≤ n− ek(n) < ek(n)+1 − ek(n),

because the maximal difference of the block length between the words
Zn and Zek(n)

equals n− ek(n).

2.
ek(n)+1

ek(n)
=

ek(n)+1

k(n) + 1
· k(n) + 1

ek(n)

k→∞−−−→ 1 Po − a.s.

3.

0 <
ek(n)+1 − ek(n)

n
≤

ek(n)+1 − ek(n)

ek(n)
=

ek(n)+1

ek(n)
−1

n→∞−−−→ 0 Po−a.s.
(3.5)

Hence,
`(Zn) − `(Wk(n))

n

n→∞−−−→ 0 Po − a.s..

Furthermore, we have
`(Wk(n))

k(n)
=

k(n)

k(n)
= 1.

As

0 ≤ n

ek(n)
<

ek(n)+1

ek(n)

n→∞−−−→ 1 Po − a.s.,

we can follow that ek(n)

n

n→∞−−−→ 1 Po − a.s.. (3.6)

Now we can easily prove:

Corollary 3.14.

`(Zn)

n
n→∞−−−→ ` =

1

Λ
Po − a.s.

Proof. We prove:

`(Zn)

n

=
`(Zn) − `(Wk(n))

n
+
`(Wk(n))

n

=
`(Zn) − `(Wk(n))

n
+
`(Wk(n))

k(n)
· k(n)

ek(n)
·
ek(n)

n

n→∞−−−→ 1

Λ
Po − a.s..
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3.1.4 Computation of ν

Finally, we show in this subsection how to compute the invariant probability
measure ν. For this purpose, it is sufficient to compute the transition prob-
abilities q̂(i, j) for all i, j ∈ I. With the help of equations (3.2) we construct
a formula for ν.

If r = 2, then we have q̂(1, 2) = q̂(2, 1) = 1, leading to ν(1) = ν(2) = 1/2.
For the other cases, we can derive a formula for ν with the help of the next
lemma, which proposes a formula for q̂(i, j). For reason of better readability,
we write Gi(ξi) := Gi(oi, oi|ξi).

Lemma 3.15. Let i, j ∈ I with i 6= j. Then

q̂(i, j) =
αj
αi

· ξi
ξj

· 1 − ξj
1 − ξi

·
(

1

(1 − ξj) ·Gj(ξj)
− 1

)

and q̂(i, i) = 0.

Proof. By definition of Wk and Po[Z∞ ∈ V∞] = 1 follows q̂(i, i) = 0. With
Lemma 3.11 we obtain:

q̂(i, j) =
∑

n≥1

∑

y∈V ×

j

q
(
(x,m, i), (y, n, j)

)

=
1 − ξj
1 − ξi

·
∑

n≥1

∑

y∈V ×

j

∑

s∈P(y)

[
k

(n−1)
i (o, s) · αj · pj(s, y)

]

=
1 − ξj
1 − ξi

· αj · γi,j(1)

=
αj
αi

· ξi
ξj

· 1 − ξj
1 − ξi

·
( 1

(1 − ξj) ·Gj(ξj)
− 1
)
.

We now give an explicit formula for ν:

ν(i) = c · αi (1 − ξi)

ξi
·
(
1 − (1 − ξi) ·Gi(ξi)

)
, (3.7)

where c > 0 is chosen such that
∑

i∈I ν(i) = 1. This is indeed an invariant
measure, because, writing x(i) = 1− (1− ξi)Gi(ξi), the invariance condition
on ν is just

∑

i∈I\{j}
x(i) =

x(j)
1

(1−ξj)·Gj(ξj)
− 1

for each j ∈ I
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or, equivalently, that ∑

i∈I
x(i) = 1.

The following lemma is the key to verify this equation.

Lemma 3.16. Let i ∈ I. Then

ρ(i) := Po

[
Z(1)
∞ ∈ V ×

i ,∀n ∈ N : Zn /∈
⋃

j∈I\{i}
Vj

]
=

1 − (1 − ξi)Gi(ξi)

G(o, o|1) .

Proof. By transience, o is visited only finitely often Po-a.s., that is,

∑

i∈I
G(o, o|1) ρ(i) = 1. (3.8)

This yields

ρ(i) =
∑

y∈V ×

i

∑

j∈I\{i}
L(o, y|1) · ρ(j)

=
∑

y∈V ×

i

L(o, y|1) ·
(
G(o, o|1)−1 − ρ(i)

)

=
(
G(o, o|1)−1 − ρ(i)

) ∑

y∈V ×

i

Gi
(
oi, y|ξi

)

Gi
(
ξi
)

=
(
G(o, o|1)−1 − ρ(i)

)
·
(

1

(1 − ξi) ·Gi(ξi)
− 1

)
.

This leads to the proposed equation.

The formula for ρ(i) together with equation (3.8) yields
∑

i∈I x(i) = 1, that
is, ν is indeed the invariant probability measure of (τk)k∈N.

Final remarks:

If we know for each factor Xi, i ∈ I, the first visit generating functions
Fi(s, oi|z) for all s ∈ P(oi), it is possible to compute ξi(z) by solving a finite
system of characteristic equations. This is in fact only possible when the
generating functions are not too complicated or even unknown. Furthermore,
one has to know the Green function Gi(oi, oi|z) for each i ∈ I. The measure
ν can then be computed by (3.7), and thus also `. Sample computations are
presented in Section 3.6.
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3.2 Computation by Double Generating Functions

In this section we compute the rate of escape ` for the random walk on X
using double generating functions. The main tool for our computation is the
following theorem:

Theorem 3.17 (Sawyer and Steger). Let (Yn)n∈N0 be a sequence of real-
valued random variables such that for some δ > 0,

E

(∑

n≥0

exp(−rYn − sn)

)
=
C(r, s)

g(r, s)
for 0 < r, s < δ,

where C(r, s) and g(r, s) are analytic for |r| < δ, |s| < δ and C(0, 0) 6= 0.
Denote by gr and gs the partial derivatives of g w.r.t. r and s. Then:

1.
Yn
n

n→∞−−−→ C =
gr(0, 0)

gs(0, 0)
almost surely.

2. If (Yn)n∈N0 is a reversible Markov chain, then

Yn − nC√
n

n→∞−−−→ N(0, σ2) in law, where

σ2 =
− ∂
∂r
gr(0, 0) + 2C ∂

∂s
gr(0, 0) − C2 ∂

∂s
gs(0, 0)

gs(0, 0)
≥ 0.

Proof. See Sawyer and Steger [37, Theorem 2.2].

We generalize the next considerations for later computations and we denote
by l(·) a length function on X. Setting Yn = l(Zn), w = e−r and z = e−s,
we apply Theorem 3.17 for the computation of ` and – in the next chapter –
the rate of escape w.r.t. to any other length function l on X. It is sufficient
to investigate the double generating function

E(w, z) :=
∑

x∈V

∑

n≥0

p(n)(o, x)wl(x) zn =
∑

x∈V
G(o, x|z)wl(x) (3.9)

and to find for it a representation of the form

C(w, z)

g(w, z)
for 1 − δ < w, z < 1 for some δ > 0

such that C(w, z) and g(w, z) are analytic for |w − 1|, |z − 1| < δ and
C(1, 1) 6= 0. Note that E(w, z) converges if 0 < w, z < 1:

E(w, z) =
∑

n≥0

∑

x∈V
p(n)(o, x)wl(x)zn ≤

∑

n≥0

zn <∞ .
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We now introduce further double generating functions arising from last exit
generating functions. Define for real w, z > 0

L(w, z) :=
∑

x∈V
L(o, x|z)wl(x)

= 1 +
∑

n≥1

∑

x=x1...xn∈V \{o}

n∏

j=1

wl(xj )Lτ(xj)

(
oτ(xj), xj |ξτ(xj)(z)

)

and for i ∈ I
L+
i (w, z) :=

∑

x∈V ×

i

Li
(
oi, x|ξi(z)

)
wl(x),

Li(w, z) := L+
i (w, z) ·
(

1 +
∑

n≥2

∑

x2...xn∈V \{o},
τ(x2)6=i

n∏

j=2

wl(xj)Lτ(xj)

(
oτ(xj), xj |ξτ(xj)(z)

))
.

Thus, we have the equation

L(w, z) = 1 +
∑

i∈I
Li(w, z).

If w, z ∈ R with 0 < w, z < 1, then convergence of L(w, z) follows by
L(w, z) ≤ E(w, z), and thus convergence of L+

i (w, z) and Li(w, z) for each
i ∈ I. The next lemma proposes another representation of L(w, z):

Lemma 3.18. Let w, z ∈ R with 0 < w, z < 1. Then

L(w, z) =
1

1 −L∗(w, z)
, where L∗(w, z) :=

∑

i∈I

L+
i (w, z)

1 + L+
i (w, z)

.

Proof. Let w, z ∈ R with 0 < w, z < 1. First, we have

Li(w, z) = L+
i (w, z) ·

(
1 +

∑

j∈I\{i}
Lj(w, z)

)
for i ∈ I,

and by convergence of L(w, z) follows

Li(w, z) = L+
i (w, z) ·

(
L(w, z) −Li(w, z)

)
.

As L+
i (w, z) > 0 holds, the last equation is equivalent to

Li(w, z) =
L+
i (w, z)

1 + L+
i (w, z)

L(w, z) .

Thus,

L(w, z) = 1 +
∑

i∈I
Li(w, z) = 1 + L∗(w, z)L(w, z).

As L(w, z) < ∞ and L∗(w, z) > 0, we have 1 6= L∗(w, z) < ∞. This yields
the proposed equation.
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Corollary 3.19. Let w, z ∈ R with 0 < w, z < 1. Then

E(w, z) =
G(o, o|z)

1 −L∗(w, z)
.

Proof. Let w, z ∈ R with 0 < w, z < 1. Applying Lemmas 1.6 and 3.18
yields the proposed equation:

E(w, z) =
∑

x∈V
G(o, o|z)L(o, x|z)wl(x) = G(o, o|z)L(w, z) =

G(o, o|z)
1 −L∗(w, z)

.

We can now conclude and compute a formula for the rate of escape `. For
this purpose, let now for the rest of this section be l(·) the block length, that
is, l(x) = `(x) for all x ∈ V . Then

L+
i (w, z) = w ·

∑

x∈V ×

i

Li
(
oi, x|ξi(z)

)
for each i ∈ I.

This yields

L∗(w, z) =
∑

i∈I

w
∑

x∈V ×

i
Li
(
oi, x|ξi(z)

)

1 + w
∑

x∈V ×

i
Li
(
oi, x|ξi(z)

)

=
∑

i∈I

w
∑

x∈V ×

i
Gi
(
oi, x|ξi(z)

)

Gi
(
oi, oi|ξi(z)

)
+ w

∑
x∈V ×

i
Gi
(
oi, x|ξi(z)

)

=
∑

i∈I

w
(

1
1−ξi(z) −Gi

(
oi, oi|ξi(z)

))

Gi
(
oi, oi|ξi(z)

)
+ w

(
1

1−ξi(z) −Gi
(
oi, oi|ξi(z)

))

=
∑

i∈I

w
(

1
1−ξi(z) −Gi

(
oi, oi|ξi(z)

))

w
1−ξi(z) + (1 − w)Gi

(
oi, oi|ξi(z)

) . (3.10)

Now we define

C(w, z) := G(o, o|z) and g(w, z) := 1 −L∗(w, z),

yielding

E(w, z) =
C(w, z)

g(w, z)
for 0 < w, z < 1.

There is δ > 0 such that C(w, z) and g(w, z) are analytic for all w, z ∈ C

with |w − 1|, |z − 1| < δ. This is due to the fact that

– G(o, o|z) and ξi(z) are continuous and have radii of convergence bigger
than 1,
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– the inequality ξi(z) 6= 1 holds in a neighbourhood of 1 by continuity
of ξi(z) and

– the continuous denominators in (3.10) evaluated at (1, 1) are non-zero,
providing that these denominators are non-zero in a neighbourhood
of 1.

Furthermore, C(1, 1) = G(o, o|1) 6= 0. Hence, all required conditions for an
application of Theorem 3.17 are fulfilled. The derivatives of g w.r.t. to r and
s evaluated at (0, 0) are given by

gr(0, 0) = gw(e0, e0) · (−e0) = −gw(1, 1) and

gs(0, 0) = gz(e
0, e0) · (−e0) = −gz(1, 1), (3.11)

where gw and gz are the derivatives of g w.r.t. w and z. Thus, we can
conclude:

`(Zn)

n

n→∞−−−→ ` =
gw(1, 1)

gz(1, 1)
Po − a.s..

Simplifications yield the following formula for `:

Corollary 3.20. Write Gi(ξi) := Gi(oi, oi|ξi) and G′
i(ξi) := G′

i(oi, oi|ξi),
which is the derivative of Gi(oi, oi|z) w.r.t. z evaluated at ξi. Then

` =

∑
i∈I
[(

1 − (1 − ξi)Gi(ξi)
)
·Gi(ξi) · (1 − ξi)

]

∑
i∈I
[
ξ′i(1) ·

(
Gi(ξi) − (1 − ξi) ·G′

i(ξi)
)] > 0 .

Proof. It remains to show that ` > 0: for all i ∈ I, it is ξi < 1, Gi(ξi) > 0
and

Gi(ξi) <
1

1 − ξi
.

Thus, we have ` > 0.

3.3 Computation by Limit Processes

In this section we present a third technique for the computation of the rate
of escape ` w.r.t. the block length for the random walk on the free product.
This technique is restricted to the case of a free product of Cayley graphs
of groups, which is then itself the Cayley graph of the free product of those
groups.

Let (Γi)i∈I be a finite family of non-trivial finite or countable groups. We
assume that the groups have pairwise trivial intersections, but may be iso-
morphic. Denote by ei the identity on Γi and write Γ×

i := Γ \ {ei}. The
elements of the free product group Γ := Γ1 ∗ · · · ∗ Γr are all finite words

g1g2 . . . gn
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over the alphabet
⋃
i∈I Γ×

i , such that no two consecutive letters come from
the same Γ×

i . The empty word is described by e, and ei as a word in Γ
is identified with e. Furthermore, we write Γ× = Γ \ {e}. Analogously, the
block length `(g1 . . . gn) of g1 . . . gn ∈ Γ is n and `(e) := 0.

We can define a group operation on Γ: the product of u, v ∈ Γ is the con-
catenation of the words u and v with possible cancellations and contractions
in the middle to get the representative form of the product word. For in-
stance, if u1, u2 ∈ Γ1, v1, v2 ∈ Γ2, then (u1v1u2) ◦ (u−1

2 v2u2) = u1wu2, where
w = v1v2 ∈ Γ2. For details, see e.g. the book by Lyndon and Schupp [22].
Recall that we exclude the case r = 2 = cardΓ1 = cardΓ2. This ensures that
the free product group Γ is not amenable (e.g. compare with Paterson [32]),
yielding that each of our constructed random walks on Γ is transient and
that G(e, e|z) has radius of convergence bigger than 1; compare e.g. also
with Woess [43, Theorem 10.10, Proposition 12.4, Corollary 12.5].

The random walk on Γ starting at e is constructed as follows: suppose we are
given probability measures µi on Γ×

i for each i ∈ I such that µi defines an
irreducible random walk on Γi, that is, pi(x, y) = µi(x

−1y) for all x, y ∈ Γi.
Additionally, we set µi(ei) := 0. Choose α1, . . . , αr > 0 with

∑
i∈I αi = 1.

Then we define the transition probabilities on Γ as

p(x, xg) =

{
αi · µi(g), if g ∈ Γ×

i

0, otherwise
,

where x ∈ Γ. As the transition probabilities depend only on g ∈ Γi, we
write µ(g) := p(x, xg) for all g ∈ ⋃i∈I Γ×

i , and µ(g) := 0 otherwise. The

n-fold convolution power of µ is denoted by µ(n), and p(n)(x, xg) = µ(n)(g)
for all g ∈ Γ. Observe that if Xi is the Cayley graph of Γi w.r.t. the set of
generators {g ∈ Γi | µi(g) > 0}, then there is a one-to-one correspondence
between the above defined random walk on Γ and the associated random
walk on X = X1 ∗ · · · ∗ Xr, which is the Cayley graph of Γ w.r.t. the set
of generators {g ∈ Γ | µ(g) > 0}. In other words, the random walk on Γ
represents the random walk on X arising from the random walks on the
Xi’s in the sense of Section 2.2. Thus, we may use all previous results and
notation, since the definitions in this section constitute a special case of the
more general case of free products of graphs. In particular, the block length
of g ∈ Γ is the block length of the vertex inX representing g. Observe that X
as a Cayley graph is transitive. Thus, existence of the rate of escape ` follows
by an easy consequence of Kingman’s subaddditive ergodic theorem (or as
well by our previous results). We will see that we can drop irreducibility of
the µi’s, which we assumed only for sake of simplicity and tracing back the
case of free products of groups to the case of general free products of graphs.
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Furthermore, we denote by

Γ∞ :=

{
x1x2 . . .

∣∣∣ ∀j ∈ N : ij ∈ I, xj ∈ Γ×
ij
, ij 6= ij+1

}

the set of all infinite, alternating words, that is, in the context of Section 2.4
we have V∞ = Γ∞.

By Proposition 2.10, the random walk converges again Pe-a.s. to a random
variable Z∞ valued in Γ∞. Denote by ν the distribution of Z∞. Let

Ei :=
{
x1x2 · · · ∈ Γ∞

∣∣ τ(x1) = i
}

for i ∈ I.

Then ν is uniquely determined by the distribution of the Borel-sets B, where
B is of the form xEi = {xh |h ∈ Ei} with i ∈ I, x ∈ Γ and τ(x) 6= i. We
will now give a formula for the distribution of these Borel-sets:

Lemma 3.21. Let i ∈ I, x ∈ Γ with τ(x) 6= i. Then

ν(xEi) = Pe[Z∞ ∈ xEi] = F (e, x) ·
(
1 −

(
1 − ξi

)
Gi
(
ei, ei|ξi

))
.

Proof. The proof of the lemma is extrapolated from Woess [40, Theorem 4c],
where one can find an erroneous formula, which we correct here. First, we
have

ν(xEi) = F (e, x|1) · ν(Ei).
Recall that we have by vertex-transitivity

Gi(oi, oi|z) = Gi(y, y|z)

for all i ∈ I and all y ∈ Γi. By Lemma 3.16, we obtain

ν(Ei) = G(o, o|1) · ρ(i) = 1 − (1 − ξi)Gi(ei, ei|ξi).

This leads to the proposed formula.

Now we reformulate our problem for finding a formula for `. For this purpose,
we apply a technique going back to Furstenberg [12], which was used by
Ledrappier [21, Section 4b] for free groups.

By Lebesgue’s Convergence Theorem, we have Pe − a.s.

lim
n→∞

E[`(Zn)]

n
= lim

n→∞

∫
`(Zn)

n
dPe =

∫
lim
n→∞

`(Zn)

n
dPe =

∫
` dPe = `.

Thus, it is sufficient to prove convergence of the sequence

(
E[`(Zn+1)] − E[`(Zn)]

)
n∈N
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and to compute its Pe-a.s. limit, which then must equal `. First, we have

E[`(Zn)] =
∑

h∈Γ

`(h)µ(n)(h)

and

E[`(Zn+1)] =
∑

g,h∈Γ

`(gh)µ(g)µ(n)(h).

On the other hand,

E[`(Zn)] =
∑

g∈Γ

µ(g) E[`(Zn)] =
∑

g,h∈Γ

µ(g) `(h)µ(n)(h).

Thus, we obtain

E[`(Zn+1)] − E[`(Zn)] =
∑

g∈Γ

µ(g)
∑

h∈Γ

(
`(gh) − `(h)

)
µ(n)(h)

=
∑

g∈Γ

µ(g)

∫ (
`(gZn) − `(Zn)

)
dPe.

Define now the random variables

Yg,n := `(gZn) − `(Zn)

for any given g ∈ ⋃
i∈I Γ×

i and n ∈ N. We have Yg,n ∈ {−1, 0, 1} for all
n ∈ N as ∣∣`(gZn) − `(Zn)

∣∣ ≤ 1.

By vertex-transitivity, gZn converges to gZ∞. Hence, Yg,n converges almost
surely to a random variable Yg,∞ valued in {−1, 0, 1} depending only on
g and the first block of Z∞. In other words, Yg,n rests constant for n big
enough. Indeed, if Z∞ = x1x2 · · · ∈ Γ∞, we obtain for given g ∈ ⋃i∈I Γ×

i :

Yg,∞ =





0 , if τ(x1) = τ(g) ∧ x1g 6= e

−1 , if τ(x1) = τ(g) ∧ x1g = e

1 , if τ(x1) 6= τ(g)

.

By Lebesgue’s Convergence Theorem, we infer that

∫ (
`(gZn) − `(Zn)

)
dPe

n→∞−−−→
∫
Yg,∞ dPe.

Consider the function

f :

(⋃

i∈I
Γ×
i

)
× Γ∞ → {−1, 0, 1}
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defined by

(g, x1x2 . . . ) 7→ lim
n→∞

(
`(gx1 . . . xn) − `(x1 . . . xn)

)

and its projections

fg : Γ∞ → {−1, 0, 1} : w 7→ f(g, w),

for every g ∈ ⋃i∈I Γ×
i . Observe that each fg is measureable and thus

∫
Yg,∞ dPe =

∫

Γ∞

f(g, Z∞) dν =

∫

Γ∞

fg(w) dν(w).

Denote by Eh the event that Z∞ has as first block the element h ∈ ⋃i∈I Γ×
i

and denote by E 6=i the event that Z∞ starts with a block element not of
type i ∈ I. Then we obtain for g ∈ Γ×

i

ν(Eg−1) = F (e, g−1|1) ·
(
1 − ν(Ei)

)
= F (e, g−1|1) · (1 − ξi) ·Gi(ei, ei|ξi)

and

ν(E 6=i) = 1 − ν(Ei) = (1 − ξi) ·Gi(ei, ei|ξi).

For reason of better readability, we use again the short notation Gi(ξi) for
Gi(ei, ei|ξi). Now we can conclude:

E[`(Zn+1)] − E[`(Zn)]

=
∑

g∈Γ

µ(g)

∫ (
`(gZn) − `(Zn)

)
dPe

n→∞, a.s.−−−−−−→
∑

g∈Γ×

µ(g)

∫

Γ∞

fg(w) dν(w)

=
∑

i∈I

∑

g∈Γ×

i

µ(g)
(
−ν(Eg−1) + ν(E 6=i)

)

=
∑

i∈I

∑

g∈Γ×

i

αi µi(g) (1 − ξi)Gi(ξi)
(
1 − Fi(ei, g

−1|ξi)
)

=
∑

i∈I
αi (1 − ξi)Gi(ξi)

(
1 −

∑

g∈Γ×

i

µi(g)Fi(ei, g
−1|ξi)

︸ ︷︷ ︸
=

Gi(ξi)−1

ξi ·Gi(ξi)

)

=
∑

i∈I
αi

1 − ξi
ξi

(
1 − (1 − ξi)Gi(ξi)

)
.

Thus, we get once more the rate of escape of the block length:
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Corollary 3.22.

` =
∑

i∈I
αi

1 − ξi
ξi

(
1 − (1 − ξi)Gi(ξi)

)
.

�

We conclude this section with two final remarks:

1. Note that the probability measures do not need to be irreducible, since
this property is not necessarily required in the proofs.

2. Observe that the presented technique in this section can be extended
to a free product of an infinite, countable number of groups. All the
necessary properties of the used generating functions from Section 2.3
hold also in this case. Furthermore, Yg,n is again bounded such that
finiteness of ` is ensured. Thus, the same computations prove the same
formula for ` if I = N.

3.4 Partial Rate of Escape w.r.t. the Block Length

We think of X again as a general free product of graphs, not necessarily
equipped with a group structure as in the last section. We extend the con-
siderations of Section 3.1 to the question at which frequency the random
walk on the free product X visits different copies of a single graph Xi for
some i ∈ I. For this purpose, we define:

Definition 3.23 (Partial Block Length). Let x = x1 . . . xm ∈ V \ {o}
and i ∈ I. Then the i-th partial block length of x is

`i(x) := card
{
j ∈ {1, . . . ,m}

∣∣ xj ∈ Xi

}

and `i(o) := 0.

We can now define the following characteristical ‘speed’ number for each
i ∈ I: if there is a constant `i ∈ R≥ such that

`i := lim
n→∞

1

n
`i(Zn) almost surely,

then `i is called the i-th partial rate of escape w.r.t. the block length. Existence
of `i for all i ∈ I can be easily shown using the considerations of Section
3.1.3. We have:

0 ≤ `i(Zn) − `i(Wk(n)) ≤ n− ek(n) < ek(n)+1 − ek(n),
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as the maximal difference of the i-th partial block length between the words
Zn and Zek(n)

equals n − ek(n). Using relation (3.5) from Section 3.1.3 we
obtain

`i(Zn) − `i(Wk(n))

n

n→∞−−−→ 0 Po − a.s.. (3.12)

Furthermore, we get:

Lemma 3.24. Let i ∈ I. Then

1

k
`i(Wk)

k→∞−−−→ ν(i) Po − a.s..

Proof. Consider the Markov chain (τk)k∈N on the finite state space I with
its invariant probability measure ν. Define the indicator function on I w.r.t.
i ∈ I as

�
i : I → {0, 1} : j 7→

{
1, if i = j

0, otherwise
.

By the Ergodic Theorem 3.6, we obtain

1

k
`i(Wk) =

1

k

k∑

j=1

�
i

(
τ(Wj)

) k→∞−−−→
∑

j∈I

�
i(j)ν(j) = ν(i) Po − a.s..

Hence, we can conclude:

Corollary 3.25. Let i ∈ I. Then

`i(Zn)

n

n→∞−−−→ ν(i) · ` =
ν(i)

Λ
Po − a.s..

Proof. Applying Corollary 3.13, Lemma 3.24, (3.6) and (3.12), we get Po-a.s.:

`i(Zn)

n
=

`i(Zn) − `i(Wk(n))

n
+
`i(Wk(n))

n

=
`i(Zn) − `i(Wk(n))

n
+
`i(Wk(n))

k(n)
· k(n)

ek(n)
· ek(n)

n

n→∞−−−→ ν(i)

Λ
.

Remarks:

1. If r = 2, then we have ν(1) = ν(2) = 1/2. In this case we obviously
have `1 = `2 = `/2.

2. Observe that ` =
∑

i∈I `i.

3. The techniques of Sections 3.2 and 3.3 can also be adapted easily to
compute not only `, but also `i.
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3.5 Deviation from the Limit Path

In this section, we want to link the random walk on the free product X
with its boundary limit Z∞, showing that the random walk is logarithmi-
cally quite close to the path induced by Z∞. For this purpose, define for
x = x1 . . . xm ∈ V and y = y1 . . . yn ∈ V

x ∧ y := x1 . . . xk,

where k = max
{
0 ≤ j ≤ min{m,n} | x(j) = y(j)

}
, the confluent of x and y.

If x1 6= y1, then x ∧ y = o. Furthermore, define

dist(x, y) := `(x) − `(x ∧ y).
For sets S ⊆ V and x ∈ V define

dist(x, S) := min
{
dist(x, s) | s ∈ S

}

and
Z̄∞ :=

{
o, Z(m)

∞
∣∣ m ∈ N

}
.

We want to show:

Theorem 3.26. Let θ := max{ξi | i ∈ I}. Then we have almost surely

lim sup
n→∞

dist(Zn, Z̄∞)

log n
≤ 1

− log θ
.

A similar theorem is given in a more special case of trees with finitely many
cone types in Nagnibeda and Woess [30, Section 7], which is extrapolated
from Ledrappier [21]. As the conclusion in [30] is proved in a wrong way, we
give a complete proof for our case using the ideas of [30]. To prove Theorem
3.26, we need the following two lemmas:

Lemma 3.27. For i ∈ I and x, y ∈ Vi with x 6= y,

Fi(x, y | ξi) ≤ ξi.

Proof. Let T
(i)
y be the first visit stopping time of y ∈ Vi for the random walk

Pi on Xi starting at x ∈ Vi \ {y}. As ξi < 1, we obtain:

Fi(x, y | ξi) =
∑

n≥1

Px[T
(i)
y = n] ξni

= ξi ·
∑

n≥1

Px[T
(i)
y = n] ξn−1

i

≤ ξi ·
∑

n≥1

Px[T
(i)
y = n]

= ξi · Fi(x, y | 1)
≤ ξi.
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Lemma 3.28. For r > 0,

Po

[
dist(Zn, Z̄∞) ≥ r

]
≤ θr.

Proof. Let x = x1 . . . xn ∈ V . If n < dre, then dist(x, Z̄∞) < r and conse-
quently Px

[
dist(x, Z̄∞) ≥ r

]
= 0. If n ≥ r, then dist(x, Z̄∞) ≥ r means that

Z∞ does not have x1 . . . xn−dre+1 as a prefix. Equivalently, the length of the
common prefix of x and Z∞ is at most n− dre. Observe that

F (x1 . . . xj, x1 . . . xj−1|1) = Fτ(xj )(xj , oτ(j)|ξj) for all j ∈ {1, . . . , n},

where x0 = o. Writing y := x1 . . . xn−dre we obtain with Lemma 1.6 (iv),
Proposition 2.5 and Lemma 3.27

Px

[
dist(x, Z̄∞) ≥ r

]

= F (x, y) · Py

[
Z(n−dre+1)
∞ 6= x1 . . . xn−dre+1

]

=

n∏

j=n−dre+1

Fτ(xj)

(
xj , oτ(xj) | ξτ(xj)

)
· Py

[
Z(n−dre+1)
∞ 6= x1 . . . xn−dre+1

]

≤ θdre · Py

[
Z(n−dre+1)
∞ 6= x1 . . . xn−dre+1

]
≤ θr.

Now we can conclude:

Po

[
dist(Zn, Z̄∞) ≥ r

]
=
∑

x∈V
Po[Zn = x] · Px

[
dist(x, Z̄∞) ≥ r

]
≤ θr.

Proof of Theorem 3.26. Let δ > 0 and define the sequence of events

An :=

[
dist(Zn, Z̄∞) ≥ log n1+δ

− log θ

]
.

Then Po[An] ≤ 1/n1+δ and, by the Borel-Cantelli lemma, with probability
1 only a finite number of these events occur. Thus, we have almost surely

lim sup
n→∞

dist(Zn, Z̄∞)

(1 + δ) log n
≤ 1

− log θ
.

Making δ arbitrarily small yields the claim.

3.6 Sample Computations

This section gives sample computations for the rate of escape w.r.t. the block
length of random walks on different free products of graphs. We show how
to compute the required generating functions, and thus `.
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3.6. SAMPLE COMPUTATIONS

3.6.1 Z/2Z ∗ Z/3Z

Consider the groups

Γ1 := 〈a | a2 = e1〉 ' Z/2Z and Γ2 := 〈b | b3 = e2〉 ' Z/3Z,

where e1, e2 respectively, denote the identity on Γ1, on Γ2 respectively.
We are interested in a nearest neighbour random walk on the Cayley graph
of Γ1 ∗ Γ2 (see Figure 3.1), which is (using the notation from Section 3.3)
governed by a probability measure µ with µ(b) = p, µ(b2) = q and µ(a) =
1−p−q, where 0 ≤ p ≤ q < 1 and 0 < p+q < 1. This implies α1 = 1−p−q,
α2 = p+ q, µ1(a) = 1, µ2(b) = p/(p+ q) and µ2(b

2) = q/(p+ q).

The Cayley graph of the free product group of these two groups is not
amenable. This ensures that the corresponding Green function G(o, o|z) has
radius of convergence bigger than 1. Our aim is now the computation of `
using Corollary 3.14.

Figure 3.1: Structure of the Cayley graph of the free product Z/2Z ∗ Z/3Z

We obtain the following generating functions:

F1(a, o1|z) = z, G1(o1, o1|z) =
1

1 − z2
,

F2(b, o2|z) =
∑

m≥1

µ2(b)
m+1µ2(b

2)m−1z2m +
∑

m≥0

µ2(b)
mµ2(b

2)m+1z2m+1

=
∑

m≥1

( z

p+ q

)2m
pm+1qm−1 +

∑

m≥0

( z

p+ q

)2m+1
pmqm+1

=
p

q

∑

m≥0

(√pq z
p+ q

)2m
− p

q
+

qz

p+ q

∑

m≥0

(√pq z
p+ q

)2m

=
(p
q

+
qz

p+ q

) 1

1 −
(√

pq z

p+q

)2 − p

q
.
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Analogously, in the case p 6= 0 we get

F2(b
2, o2|z) =

(q
p

+
pz

p+ q

) 1

1 −
(√

pq z

p+q

)2 − q

p
.

If p = 0 then F2(b
2, o2|z) = z2. Consequently,

U2(o2, o2|z) =
pz

p+ q
F2(b, o2|z) +

qz

p+ q
F2(b

2, o2|z)

and

G2(o2, o2|z) =
1

1 − U2(o2, o2|z)
.

Furthermore,

H̄1(z) = p · z · F2

(
b, o2|ξ2(z)

)
+ q · z · F2

(
b2, o2|ξ2(z)

)
,

H̄2(z) = (1 − p− q) · z · ξ1(z),

ξ1(z) =
(1 − p− q) · z

1 − p · z · F2

(
b, o2|ξ2(z)

)
− q · z · F2

(
b2, o2|ξ2(z)

) ,

ξ2(z) =
(p+ q) · z

1 − (1 − p− q) · z · ξ1(z)
.

By plugging ξ1(z) into ξ2(z), we obtain an equation in the variable ξ2(z).
Solving this cubic equation with mathematica leads to three solutions,
where two of these can be dropped, as ξ2(1) < 1 has to hold and ξ2(z)
has to be strictly increasing and continuous. Due to the complexity of this
solution, we omit to state ξ2(z) explicitly.

As the block length `(Zn) goes to infinity, it must be q̂(1, 2) = q̂(2, 1) = 1,
that is, ν(1) = ν(2) = 1/2. Now we are able to compute the constant Λ
from Corollary 3.12 and by that `. It is also possible to compute ` by the

0.1 0.2 0.3 0.4 0.5

0.02

0.04

0.06

0.08

0.1

0.12

0.14

p q `

1/6 1/5 0.12803

1/4 1/3 0.14269

1/3 1/3 0.13333

1/4 1/2 0.11657

1/4 2/3 0.04989

1/8 3/4 0.07161

Figure 3.2: Rate of escape on Z/2Z ∗ Z/3Z
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3.6. SAMPLE COMPUTATIONS

formulas given in the Corollaries 3.20 and 3.22. Figure 3.2 shows the values
of ` for different values of p and q. The graph in Figure 3.2 illustrates the
value of ` on the y-axis in dependence of p = q on the x-axis.

Note that in this example the rate of escape w.r.t. the block length and the
rate of escape w.r.t. the minimal path length are obviously identical if p 6= 0.

3.6.2 Free Product of Non-Cayley-Graphs

Let X1, X2 and X3 be graphs as shown in Figure 3.3, with the sketched
transition probabilities. Consider the corresponding random walk on the

1
5

1
5 1

5

1
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1
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1
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1
2

1
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1
2

1
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1
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o

A

C
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1

1

1

1

I

o3

o2

1 1

GH

1 1

J

X

X

X

1

2

3

B

1

Figure 3.3: Some non-Cayley graphs

free product X = X1 ∗X2 ∗X3, where α1 = 5/9 and α2 = α3 = 2/9. Note
that none of X1, X2 and X3 is a Cayley graph, and X also not. This example
demonstrates the power of our formulas for `, as we can even apply them
on free products of non-transitive graphs. We now compute ` with the help
of Corollary 3.14.

We obtain the following generating functions:

U1(o1, o1|z) =
1

5
z

(
1

2
z +

1

2
z2 + z2 + z +

1

2
z +

1

2
z2 + z

)
=

3

5
z2 +

2

5
z3,

G1(o1, o1|z) =
1

1 − U1(o1, o1|z)
=

1

1 − 3
5z

2 − 2
5z

3
,

F1(A, o1|z) = F1(E, o1|z) =
1

2
z +

1

2
z2,

F1(C, o1|z) = z2, F1(D, o1|z) = F1(F, o1|z) = z,

G2(o2, o2|z) =
1

1 − z2
, F2(G, o2, z) = F2(H, o2|z) = z,
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H̄1(z) = 2 · 2

9
z ξ2(z) =

4

9
z ξ2(z),

H̄2(z) = H̄3(z) =
2

9
z ξ2(z) +

∑

s∈S(o1)

p(o, s) · z · F (s, o|z)

=
2

9
z ξ2(z) +

5

9
· 1

5
z
(
3ξ1(z) + 2ξ1(z)

2
)
.

Note that H̄2(z) = H̄3(z) follows by symmetry. Consider

ξ1(z) =
5
9z

1 − H̄1(z)
=

5
9z

1 − 4
9 z ξ2(z)

and

ξ2(z) = ξ3(z) =
2
9z

1 − H̄2(z)
=

2
9z

1 − 2
9 z ξ2(z) − 1

9 z
(
3ξ1(z) + 2ξ1(z)2

) .

By plugging ξ1(z) into ξ2(z), we have to solve the following equation in the
variable ξ2(z):

ξ2(z) =
−2z(4zξ2(z) − 9)2

−729 + 810zξ2(z) − 288z2ξ2(z)2 + 135z2 − 60z3ξ2(z) + 32z3ξ2(z)3 + 50z3

or equivalently,

32z3ξ2(z)
4−288z2ξ2(z)

3+(810z−28z3)ξ2(z)
2+(−729−9z2+50z3)ξ2(z)+162z = 0.

Solving this equation with mathematica we obtain four continuous solu-
tions, where only one solution fulfills ξ2(1) < 1. Thus, we obtain ξ2(z) as
this solution, and by that, we get ξ1(z). It is

ξ1(1) ≈ 0.66571 and ξ2(1) = ξ3(1) ≈ 0.37231.

We get the transition matrix to the Markov chain of the alternating vertex
types as

(
q̂(i, j)

)
1≤i,j≤3

=




0 0.5 0.5
0.62769 0 0.37231
0.62769 0.37231 0


 ,

and by that the invariant probability measure ν with

ν(1) = 0.38563 and ν(2) = ν(3) = 0.30718.

Now we are able to compute the rate of escape w.r.t. the block length to the
random walk on X. We obtain

` ≈ 0.33089
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and also

`1 = ν(1) · ` ≈ 0.12760 and `2 = `3 = ν(2) · ` ≈ 0.10164.

If ` is computed by the formula given in Corollary 3.20, then the numerical
approximated result and the above result coincide in the first 50 decimal
numbers. Hence, numerical approximations do not necessarily lead to a dis-
tortion of the result in dependence which formula is used. We remark that
the associated Green functionG(o, o|z) has radius of convergence bigger than
1: this can be verified with the help of the computed generating functions.

3.6.3 Z
2 ∗ Z

2 and Z
2 ∗ Z/2Z

Let X1 be the Cayley graph of Z
2 = 〈(±1, 0), (0,±1)〉, X ′

1 another copy of
it and let X2 be the Cayley graph of the group Z/2Z = 〈a | a2 = e2〉, where
e2 is the identity on Z/2Z. The simple random walk on Z is governed by the
probability measure µ1 with

µ1

(
(±1, 0)

)
= µ1

(
(0,±1)

)
= 1/4.

Using the notation from Section 3.3 we now consider the simple random
walks on

I: X = X1 ∗ X ′
1, that is, we consider the simple random walks on both

X1 and X ′
1, each governed by µ1, and we set α1 = α2 = 1

2 .

II: X = X1 ∗X2, that is, µ1 governs the simple random walk on X1 and
we set α1 = 4

5 , α2 = 1
5 and µ2(a) = 1.

For the computation of the rate of escape w.r.t the block length of both
random walks we use the formula given in Corollary 3.22. Therefore it is
sufficient to compute ξ1, ξ2 and G1

(
(0, 0), (0, 0)|ξ1

)
. For this purpose, we use

the computations and results from Woess [43, pages 100, 104, 105 and 109].

Before we can compute the requested values, we have to introduce some
new functions. Therefore let G be an oriented graph with root vertex oG, on
which we discuss an irreducible random walk. We write

WG(z) := z ·GG(o, o|z).

As WG(z) is strictly increasing for z ≥ 0, there is an inverse function VG(z)
with VG

(
WG(z)

)
= z. By [43, Theorem 9.10], we have

GG(o, o|z) = ΦG

(
z GG(o, o|z)

)
, where ΦG(t) :=

t

VG(t)
.
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Write now W1 = WX1 , V1 = VX1 , Φi = ΦXi
for i ∈ {1, 2} and W = WX ,

V = VX and Φ = ΦX . By [43, Example 9.15 (3)],

W1(z) =
1

(2π)2

∫

(−π,π]2

2z

2 − z · (cos x1 + cosx2)
dx,

where x = (x1, x2).

I. Consider now X = Z
2 ∗Z

2. By [43, Theorem 9.19] and symmetry, we have

Φ(t) = 2Φ1(t/2) − 1.

This provides for real z ≥ 0

G(o, o|z) = 2 · Φ1

(
1

2
W (z)

)
− 1,

or equivalently,

Φ1

(
1

2
W (z)

)
=

1

2

(
G(o, o|z) + 1

)
.

Inverting this equation and multiplying with 1
2W (z) yields

1
2W (z)

Φ1

(
1
2W (z)

) =
W (z)

G(o, o|z) + 1
.

Applying W1 onto both sides of this equation yields

1

2
W (z) = W1

(
W (z)

G(o, o|z) + 1

)
.

Write G(z) := G(o, o|z) and G1(z) := G1

(
(0, 0), (0, 0)|z

)
. By [43, Equation

9.20], we have
ξ1(z)G1

(
ξ1(z)

)
= α1 z G(z), (3.13)

or equivalently,

W1

(
ξ1(z)

)
=

1

2
W (z). (3.14)

If u(z) is another function with W1

(
u(z)

)
= 1

2W (z), then

u(z) = V1

(
W1

(
u(z)

))
= V1

(1

2
W (z)

)
= V1

(
W1

(
ξ1(z)

))
= ξ1(z).

Hence,

ξ1 = ξ1(1) =
W (1)

G(o, o|1) + 1
=

W (1)

W (1) + 1
.

Substituting y = 1
2W (1), we get

ξ1 =
2y

2y + 1
,
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or equivalently,

y =
ξ1

2(1 − ξ1)
.

By plugging y into equation (3.14), we have to solve

ξ1
2(1 − ξ1)

= W1

(
ξ1
)

=
1

4π2

∫

(−π,π]2

2ξ1
2 − ξ1 (cos x1 + cos x2)

dx

in the still unknown variable ξ1. The solution can not be computed ex-
plicitely, but numerically. Considering the graphs of the functions W1(z)
and z/(2(1 − z)) we see that there is only one intersection point, which
must equal ξ1 (see Figure 3.4). By using the bisection method with numer-

0.2 0.4 0.6 0.8 1

0.5

1

1.5

2

(a) W1(z)

0.2 0.4 0.6 0.8 1

20

40

60

80

100

120

(b) z
2(1−z)

Figure 3.4: Graphs of W1(z) and z
2(1−z)

ical integration and evaluation, we can isolate the solution at any accuracy.
We obtain

ξ1 ≈ 0.54052.

Thus y ≈ 0.58819 and

G(o, o|1) = W (1) = 2y ≈ 1.17637.

With equation (3.13) we obtain

G1

(
ξ1(1)

)
=

1
2G(o, o|1)
ξ1(1)

≈ 1.08819.

By symmetry, we have obviously ξ1 = ξ2 and G1(z) = G2(z). Now we can
apply the formula given in Corollary 3.22 for the computation of the rate of
escape ` w.r.t. the block length of the random walk on Z

2 ∗ Z
2. We obtain

` ≈ 0.42503.
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II. Consider now the free product X = Z
2 ∗ Z/2Z with the corresponding

simple random walk. We proceed as in the case of Z
2 ∗Z

2. By [43, Theorem
9.19], we have the equation

Φ(t) = Φ1(α1t) + Φ2(α2t) − 1

and by [43, Example 9.15 (1)], it is

Φ2(t) =
1

2

(√
1 + 4t2 + 1

)
.

This yields

G(o, o|z) = Φ1

(4

5
W (z)

)
+ Φ2

(1

5
W (z)

)
− 1

= Φ1

(4

5
W (z)

)
+

1

2

(√
1 +

4

25
W (z)2 − 1

)
,

or equivalently,

Φ1

(4

5
W (z)

)
= G(o, o|z) − 1

2

(√
1 +

4

25
W (z)2 − 1

)
.

Inverting this equation and multiplication with 4W (z)/5 leads to

4
5W (z)

Φ1

(
4
5W (z)

) =
4
5W (z)

G(o, o|z) − 1
2

(√
1 + 4

25W (z)2 − 1
) .

By definition of Φ1, an application of W1 onto both sides of this equation
yields

4

5
W (z) = W1

(
4
5W (z)

G(o, o|z) − 1
2

(√
1 + 4

25W (z)2 − 1
)
)
.

Note that we have by [43, Equation 9.20]

W1

(
ξ1(z)

)
=

4

5
W (z). (3.15)

Analogously to the case Z
2 ∗ Z

2 the following equation has to hold:

ξ1(1) =
4
5W (1)

W (1) − 1
2

(√
1 + 4

25W (1)2 − 1
) .

Substituting y = 4
5W (1), we obtain

ξ1 = ξ1(1) =
y

5y
4 − 1

2

(√
1 + 1

4y
2 − 1

) ,
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or equivalently,

y =
(4 − 5 ξ1) ξ1

4 − 10 ξ1 + 6 ξ2
1

.

Plugging y into equation (3.15), we have to solve

(4 − 5 ξ1) ξ1
4 − 10 ξ1 + 6 ξ2

1

= W1(ξ1)

in the unknown variable ξ1. Observe that ξ1 ≥ 4/5. Again, the solution
can be computed only numerically. Considering the graphs of the functions
(4 − 5z)z/(4 − 10z + 6z2) and W1(z), we see that there is only one possible
intersection point bigger than 4

5 . See Figure 3.5.
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(b) (4−5z)z

4−10z+6z2

Figure 3.5: Graphs of W1(z) and (4−5z)z
4−10z+6z2

Using the bisection method and numerical integration and evaluation we
obtain

ξ1 ≈ 0.84426

and

y ≈ 1.12585

and

W (1) =
5

4
y ≈ 1.40731.

This yields

G1

(
(0, 0), (0, 0)|ξ1

)
=

4
5W (1)

ξ1
≈ 1.33353.

Note that

ξ1 =
4
5

1 − 1
5ξ2(1)

.

57
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Thus,
ξ2 = ξ2(1) ≈ 0.26212

and

G2(e2, e2|ξ2) =
1

1 − ξ2
2

≈ 1.07378.

Now we have computed all required values. The rate of escape w.r.t. the
block length of the simple random walk on Z

2 ∗ Z/2Z is

` ≈ 0.23385.

3.7 Summary

In this chapter we have presented three different techniques for the com-
putation of the rate of escape `: a probabilistic approach with a detailed
investigation of the behaviour of the random walk, then an approach using
double generating functions and an application of a theorem of Sawyer and
Steger, and finally an approach using limit processes for random walks on
free products of finite or countable groups. All three different techniques go
beyond previous investigated classes of free products. In our case, we are
not only restricted to (infinite) Cayley graphs, but we can also handle with
free products of any graphs, if the Green functions to the corresponding
random walks have radii of convergence bigger than 1. We extended our
techniques for the computation of the i-th partial rate of escape w.r.t. the
block length. Sample computations have shown how to compute the rate of
escape explicitly.

The three obtained formulas for ` have different requirements. As the for-
mulas given in the Corollaries 3.14 and 3.20 deal with derivatives, one has to
know the explicit form of the Green functions on the factors Xi for all i ∈ I,
and also the associated functions ξi(z). The formula given in Corollary 3.22,
however, requires only the knowledge of the values ξi(1) for all i ∈ I and
also the evaluation results Gi(oi, oi|ξi) of the Green functions. But recall
that the latter formula can only be applied to the case of random walks on
free products of groups. In general, however, it is very difficult to compute
the required generating functions and values.
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Chapter 4

Rate of Escape w.r.t. other
Length Functions

Considering a random walk on the free product X in the sense of Chapter 2
we investigate in this chapter the rate of escape w.r.t. to other length func-
tions beyond the block length. For this purpose, we extend the considerations
of Sections 3.1 and 3.2. The technique of Section 3.3, though, is not suitable
for such an extension. The plan for this chapter is as follows: in Section 4.1,
we show existence of the rate of escape w.r.t. the minimal path length and
compute a formula for this constant. In Section 4.2, we show existence of the
almost sure, constant limit limn→∞ l(Zn)/n w.r.t. a length function l, which
arises from bounded length functions on the factors Xi. Analogously to the
previous chapter, we compute the partial rate of escape w.r.t. the minimal
path length in Section 4.3, where we only respect lengths coming from the
copies of a single factor Xi with some fixed i ∈ I. Finally, we conclude this
chapter by presenting sample computations in Section 4.4.

4.1 Computation by First Exit Times

In this section we use the considerations of Section 3.1 to prove almost sure
convergence of the sequence of random variables |Zn|/n to a constant λ and
to compute a formula for it. Recall that |x|, x ∈ V , is the minimal length of
a path from the root o to x. In general, this is not the length of a shortest
path from x to o (compare with Section 3.6.2). We introduce some notation.
Let i ∈ I and n ∈ N. Then the Vi-ball of radius n centered at oi is given
by Bi(n) :=

{
x ∈ Vi

∣∣ |x| ≤ n
}
. The sphere of Vi with radius n is the set

Si(n) =
{
x ∈ Vi

∣∣ |x| = n
}
.

As seen in Section 3.1.2,
(
W̃k, ik, τk

)
k∈N

is a positive recurrent Markov chain
on A with the invariant probability measure π given by equation (3.3).
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Consider
h : A → N : (y, n, j) 7→ |y| .

We show that h is π-integrable:

Lemma 4.1. σ :=
∫
h dπ exists.

Proof. Recall from Section 3.1.3 the definition of g(y, n, j) = n, where
(y, n, j) ∈ A. Observe that (y, n, j) ∈ A implies n ≥ |y|, as the random
walk on X is of nearest neighbour type. By Lemma 3.10,
∫
h dπ =

∑

(y,n,j)∈A
|y| · π(y, n, j) ≤

∑

(y,n,j)∈A
n · π(y, n, j) =

∫
g dπ <∞.

Observe that

1

n

n∑

k=1

h
(
W̃k, ik, τk

)
=

∣∣W̃1

∣∣+
∣∣W̃2

∣∣+ · · · +
∣∣W̃n

∣∣
n

=

∣∣Wn

∣∣
n

.

An application of the Ergodic Theorem for positive recurrent Markov chains,
Theorem 3.6, yields

1

n

n∑

k=1

h
(
W̃k, ik, τk

)
n→∞−−−→

∫
h dπ = σ Po − a.s.,

that is, |Wn|/n converges to σ almost surely. Now

0 ≤ |Zn| − |Wk(n)| ≤ n− ek(n) < ek(n)+1 − ek(n) ,

as |Zn| can increase from time ek(n) on maximally by n − ek(n). This im-
plies that (|Zn| − |Wk(n)|)/n converges to zero; compare with Section 3.1.3.
Using Corollary 3.13 and (3.6) we can prove analogously to the proof of
Corollary 3.14:

Corollary 4.2.

|Zn|
n

n→∞−−−→ λ =
σ

Λ
= σ · ` Po − a.s.

�

Finally, we want to compute a formula for σ. Therefore we define for i ∈ I
and M ⊆ Vi a modified Green function:

Gi(oi,M |z) :=
∑

x∈M
Gi(oi, x|z) =

∑

n≥0

p
(n)
i (oi,M) zn,

where p
(n)
i (oi,M) is the probability for the random walk Pi on Xi starting at

oi to stand at any y ∈M after n steps. The integral
∫
h dπ can be rewritten

as follows:
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Lemma 4.3.

σ =
∑

i,j∈I,
i6=j

ν(i)
αj
αi

ξi
ξj

1 − ξj
1 − ξi

∑

m≥1

∑

y∈Sj(m)

m · Lj(oj , y|ξj)

Proof. Writing Gi(ξi) := Gi(oi, oi|ξi), we obtain

σ =
∑

(y,n,j)∈A
|y| ·

∑

i∈I
ν(i) · q

(
(x,m, i), (y, n, j)

)

=
∑

i,j∈I,
i6=j

ν(i)αj
1 − ξj
1 − ξi

∑

y∈V ×

j

∑

s∈P(y)

pj(s, y) · |y| ·
∑

n≥1

k
(n−1)
i (o, s)

=
∑

i,j∈I,
i6=j

ν(i)αj
1 − ξj
1 − ξi

∑

m≥1

∑

y∈Sj(m)

∑

s∈P(y)

pj(s, y) ·m · Lj(oj , s|ξj)
1 − H̄i(1)

=
∑

i,j∈I,
i6=j

ν(i)
1 − ξj
1 − ξi

· αj
Gj(ξj)

·
∑

m≥1

∑

y∈Sj(m)

∑

s∈P(y)

m · pj(s, y) ·Gj(oj , s|ξj)
1 − H̄i(1)

=
∑

i,j∈I,
i6=j

ν(i)
αj
αi

1 − ξj
1 − ξi

1

Gj(ξj)

αi(
1 − H̄i(1)

)
· ξj

∑

m≥1

∑

y∈Sj(m)

m ·Gj(oj , y|ξj)

=
∑

i,j∈I,
i6=j

ν(i)
αj
αi

ξi
ξj

1 − ξj
1 − ξi

∑

m≥1

∑

y∈Sj(m)

m · Lj(oj , y|ξj).

We can also write:

σ =
∑

i,j∈I,
i6=j

ν(i)
αj
αi

ξi
ξj

1 − ξj
1 − ξi

1

Gj(ξj)

∑

m≥1

m ·
∑

k≥0

p
(k)
j

(
oj , Sj(m)

)
ξkj

=
∑

i,j∈I,
i6=j

ν(i)
αj
αi

ξi
ξj

1 − ξj
1 − ξi

1

Gj(ξj)

∑

m≥0

( 1

1 − ξj
−Gj

(
oj , Bj(m)|ξj

))
.

4.2 Computation by Double Generating Functions

Let l(·) be a length function on the free product X arising from bounded
length functions li(·) on the factors Xi. Extending the considerations of
Section 3.2, we show existence of a constant l ∈ R such that

l = lim
n→∞

1

n
l(Zn) almost surely,
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and we will compute a formula for l. Obviously, the length functions li(·)
are bounded, if all factors Xi are finite, that is, cardVi <∞ for each i ∈ I.
By Theorem 3.17, it is sufficient to consider the double generating function
E(w, z) given by equation (3.9). Define now Si(n) := {y ∈ Vi | l(y) = n} for
i ∈ I and n ∈ N. Then we obtain:

Lemma 4.4. Let w, z ∈ R with 0 < w, z < 1 and let

g(w, z) := 1 −
∑

i∈I

∑
n≥1Gi

(
oi, Si(n)|ξi(z)

)
wn

Gi
(
oi, oi|ξi(z)

)
+
∑

n≥1Gi
(
oi, Si(n)|ξi(z)

)
wn

.

Then

E(w, z) =
G(o, o|z)
g(w, z)

.

Proof. Let w, z ∈ R with 0 < w, z < 1. Recall that by Corollary 3.19 we
have

E(w, z) =
G(o, o|z)

1 −∑i∈I
L+

i (w,z)

1+L+
i (w,z)

,

where L+
i (w, z) =

∑
x∈V ×

i
Li
(
oi, x|ξi(z)

)
wl(x). This yields

L+
i (w, z)

1 + L+
i (w, z)

=

∑
x∈V ×

i
Li
(
oi, x|ξi(z)

)
wl(x)

1 +
∑

x∈V ×

i
Li
(
oi, x|ξi(z)

)
wl(x)

=

∑
x∈V ×

i
Gi
(
oi, x|ξi(z)

)
wl(x)

Gi
(
oi, oi|ξi(z)

)
+
∑

x∈V ×

i
Gi
(
oi, x|ξi(z)

)
wl(x)

=

∑
n≥1Gi

(
oi, Si(n)|ξi(z)

)
wn

Gi
(
oi, oi|ξi(z)

)
+
∑

n≥1Gi
(
oi, Si(n)|ξi(z)

)
wn

,

and thus the proposed equation follows.

Note that we have assumed that all li(·) are bounded such that Si(n) 6= ∅

only for finitely many n ∈ N. Hence, there is some δ > 0 such that g(w, z)
and C(w, z) := G(o, o|z) are analytic, if |w−1|, |z−1| < δ. This is due to the
fact that G(o, o|z) and ξi(z) are continuous and have radii of convergence
bigger than 1 and ξi(1) < 1. Furthermore C(1, 1) = G(o, o|1) 6= 0, so all
required conditions for an application of Theorem 3.17 are fulfilled. The
partial derivatives of g w.r.t. to w and z evaluated at (1, 1) are again denoted
by gw and gz . An application of Theorem 3.17 yields:

Corollary 4.5.

l(Zn)

n

n→∞−−−→ l =
gw(1, 1)

gz(1, 1)
Po − a.s.

�
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For reason of better readability, we write for i ∈ I

Gi(z) :=
∑

n≥1

n ·Gi
(
oi, Si(n)

∣∣ξi(z)
)
.

Simplifications yield the following formula for the derivatives:

gw(1, 1) = −
∑

i∈I
(1 − ξi)

2 ·Gi(ξi) · Gi(1) and

gz(1, 1) = −
∑

i∈I
ξ′i(1) ·

(
Gi(ξi) − (1 − ξi) ·G′

i(ξi)
)
,

where Gi(ξi) = Gi(oi, oi|ξi) and G′
i(ξi) is the derivative of Gi(oi, oi|z) w.r.t.

z evaluated at ξi.

Remark: If one of the li(·) is not bounded, then convergence of g(w, z) is
possible for w > 1, but not ensured.

4.3 Partial Rate of Escape w.r.t. Minimal Path
Length

We extend the considerations of Section 3.4 to the question which part of
the rate of escape w.r.t. the minimal path length is provided by visits in
copies of a single graph Xi for some i ∈ I. Therefore we define:

Definition 4.6 (Partial Minimal Path Length). Let x = x1 . . . xn ∈ V,
x 6= o, i ∈ I, and

J(x) :=
{
xj | j ∈ {1, . . . , n}, xj ∈ Xi

}
.

Then the partial minimal path length of x w.r.t. Xi is

|x|i :=
∑

y∈J(x)

|y| and |o|i := 0.

If there is a constant λi ∈ R≥ such that

λi = lim
n→∞

1

n
|Zn|i almost surely,

then λi is called the i-th partial rate of escape w.r.t. the minimal path length.
For our further computations we will need the following lemma:

Lemma 4.7. Let
hi : A → N0 : (y, n, j) 7→ |y|i.

Then hi is π-integrable, that is, σi :=
∫
hi dπ <∞.
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Proof. Recall the definition of the function h from Section 4.1. Lemma 4.1
proves the claim, as h(y, n, j) ≥ hi(y, n, j).

Existence of λi for all i ∈ I can be easily shown using the considerations of
Section 3.1.3:

0 ≤ |Zn|i − |Wk(n)|i ≤ n− ek(n) < ek(n)+1 − ek(n),

because the maximal difference of the partial minimal path length w.r.t.
Xi between the words Zn and Zek(n)

equals n − ek(n). Using (3.5) from
Section 3.1.3 we obtain

|Zn|i − |Wk(n)|i
n

n→∞−−−→ 0 Po − a.s.. (4.1)

Furthermore, we get:

Lemma 4.8. Let i ∈ I. Then

1

k
|Wk|i k→∞−−−→ σi Po − a.s..

Proof. Applying the ergodic theorem for positive recurrent Markov chains,
Theorem 3.6, we obtain:

1

k
|Wk|i =

1

k

k∑

j=1

∣∣W̃j

∣∣
i

k→∞−−−→
∫
hi dπ = σi Po − a.s..

Analogously to the proof of Corollary 3.14, we get:

Corollary 4.9. For i ∈ I,

|Zn|i
n

n→∞−−−→ λi =
σi
Λ

= σi · ` Po − a.s..

�

Finally, we want to state a formula for σi:

Lemma 4.10. For i ∈ I,

σi =
∑

j∈I\{i}
ν(j)

αi
αj

ξj
ξi

1 − ξi
1 − ξj

∑

m≥1

∑

y∈Si(m)

m · Li(oi, y|ξi).
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Proof. We obtain analogously to the proof of Lemma 4.3:

σi =
∑

(y,n,i)∈A
|y|i ·

∑

j∈I
ν(j) q

(
(x,m, j), (y, n, i)

)

=
∑

j∈I\{i}
ν(j)

αi
αj

ξj
ξi

1 − ξi
1 − ξj

∑

m≥1

∑

y∈Si(m)

m · Li(oi, y|ξi).

Remarks:

1. Obviously we have
∑

i∈I σi = σ and
∑

i∈I λi = λ.

2. If Xi is finite, Section 4.2 provides another formula for the limit λi:
setting li(x) := |x| for x ∈ Vi and lj(y) = 0 for all j ∈ I \ {i} and
y ∈ Vj yields

λi =
(1 − ξi)

2 ·Gi(ξi) · Gi(1)
∑

i∈I ξ
′
i(1) ·

(
Gi(ξi) − (1 − ξi) ·G′

i(ξi)
) .

4.4 Sample Computations

4.4.1 Free Product of Non-Cayley-Graphs

The rate of escape w.r.t. the minimal path length to the sample in Section
3.6.2 shall be computed. We choose the formula given in Corollary 4.2 for the
computation of λ = ` · σ using Lemma 4.3. Therefore we need the following
last exit generating functions for the computation of σ:

L1(o1, A|z) = L1(o1, C|z) = L1(o1, E|z) =
1

5
z,

L1(o1, B|z) =
1

5
z · 1

2
z =

1

10
z2,

L1(o1, D|z) =
1

5
z +

1

5
z2,

L1(o1, F |z) =
1

5
z +

1

5
z · 1

2
z =

1

5
z +

1

10
z2,

L2(o2, G|z) = L2(o2,H|z) =
1

2
z.

In Section 3.6.2, we have obtained ξ1(1) ≈ 0.66571 and ξ2(1) = ξ3(1) ≈
0.37231, and also ` ≈ 0.33089. We get

σ ≈ 1.02027
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and thus

λ = ` · σ ≈ 0.33760.

Furthermore,

σ1 ≈ 0.40591 and σ2 = σ3 ≈ 0.30718

and thus

λ1 = σ1 · ` ≈ 0.13431 and λ2 = λ3 = σ2 · ` ≈ 0.10164.

We extend this sample to another length function l on X1 ∗X2 ∗X3 arising
from the length functions l1, l2 and l3 on X1, X2 and X3 with

l1(A) = 1, l1(B) = 5, l1(C) = 2, l1(D) = 1, l1(E) = 2, l1(F ) = 3,

l2(G) = 1, l2(H) = 2, l3(I) = 3, l3(J) = 3.

For instance, we have S1(2) = {C,E}. We are interested in the rate of escape
w.r.t. the associated length function l on the free product X1 ∗X2 ∗X3. By
Corollary 4.5, we obtain

lim
n→∞

1

n
l(Zn) ≈ 0.70587.

4.4.2 Free Product with an Infinite Factor

Consider the infinite graph from Figure 4.1, denoted by X1, with its transi-
tion probabilities and the Cayley graph X2 of Z/3Z = 〈b | b3 = e2〉, where
e2 is the identity on Z/3Z and µ2(b) = µ2(b

2) = 1/2.

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1 1

o

Figure 4.1: A simple infinite graph

Choose 0 < α1, α2 ∈ R with α1 + α2 = 1. Consider now the associated
random walk on the free product X = X1 ∗ X2, for which we want to
compute the rate of escape w.r.t. the minimal path length. By Lemma 2.12,
the associated Green function G(o, o|z) has radius of convergence bigger
than 1.

66



4.4. SAMPLE COMPUTATIONS

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

α1 ` λ

1/6 10/51 347/1377

1/5 8/35 23/77

1/4 3/11 137/374

1/3 1/3 17/36

1/2 2/5 23/35

2/3 8/21 152/189

3/4 1/3 19/22

4/5 16/55 128/143

Figure 4.2: Rate of escape for the random walk of Sample 4.4.2

We have obviously

G1(o1, o1|z) = 1, F1(s, o1|z) = 0 for all s ∈ S(o1) and H̄2(z) = 0.

From Section 3.6.1 we have

F2(b, e2|z) = F2(b
2, e2|z) =

z

2 − z
, G2(o2, o2|z) =

2 − z

2 − z − z2
,

and

H̄1(z) =
α2 z ξ2(z)

2 − ξ2(z)
.

Thus, we obtain

ξ2(z) = α2 · z and ξ1(z) =
α1z

1 − α2
2z

2

2−α2z

.

Furthermore, we get

∑

n≥1

∑

y∈S1(n)

n · L1(o1, y|ξ1)

=
∑

n≥1

n ·
[(1

2

)n
ξn1 +

1

2
ξn1 +

1

2

( n∑

k=1

1

2k

)
ξn+1
1

]

=
(ξ1

2
− ξ21

4

)
· ∂
∂z

[ 1

1 − z

](ξ1
2

)
+
(ξ1

2
+
ξ21
2

)
· ∂
∂z

[ 1

1 − z

](
ξ1
)

=
1

2
ξ1 (4 − 3ξ1 + ξ21) (1 − ξ1)

−2 (2 − ξ1)
−1.
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Moreover,

∑

n≥1

∑

y∈S2(n)

n · L2(o2, y|ξ2) =
∑

y∈{b,b2}
L2(o2, y|ξ2) =

1
1−ξ2 −G2(e2, e2 | ξ2)

G2(e2, e2 | ξ2)
.

Thus, we can compute σ by Lemma 4.3 in dependence of α1 and α2 = 1−α1,
and by that λ = σ · `. Figure 4.2 shows the value of λ on the y-axis in
dependence of α1 on the x-axis.

4.5 Summary

We have presented formulas for the rate of escape w.r.t. different length
functions. While the formula in Section 4.1 can only handle minimal path
lengths, the formula presented in Section 4.2 can be applied to length func-
tions arising from arbitrary bounded length functions on the graphs Xi. In
Section 4.3, we extrapolated, similarily to Section 3.4, also a formula for the
i-th partial rate of escape w.r.t. the minimal path length. Sample compu-
tations have shown applications of these formulas. In general, however, the
practicability of the presented formulas is strictly related to the knowledge
of the generating functions of the single factors Xi.
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Part II

Acceleration of
Lamplighter Random Walks





Chapter 5

Lamplighter Random Walks

Consider a transitive, connected, locally finite graph G equipped with a
metric induced by weights on the edges and assume that there sits a lamp
at each vertex, which can be on or off. A lamplighter moves randomly along
the edges of the graph and may switch the lamps on or off. In this chapter,
we will describe a suitable algebraic structure for this purpose and define
transient random walks on it with different options for the lamplighter what
to do in one step. Our aim in the upcoming Chapter 6 is to show that – under
suitable assumptions – the lamplighter random walk escapes strictly faster
to infinity than its projection onto G. Furthermore, in Chapter 7 we will give
bounds for the rate of escape of the lamplighter random walk for the case
that G is a homogeneous tree.

5.1 Lamplighter Graphs

Suppose we are given a transitive, connected, locally finite graph G = (V,E),
called base graph, with root o. We allow only symmetric sets of edges E
without loops and we write x ∼ y if (x, y) ∈ E. We assign a weight w(x, y) =
w(y, x) > 0 to each edge (x, y) ∈ E. An automorphism γ ∈ AUT(G) of
the weighted graph G is weight-preserving if x1 ∼ x2 implies w(x1, x2) =
w(γx1, γx2) for all x1, x2 ∈ V . The set of weight-preserving automorphisms
of G is denoted by AUT(G, w), which is a subgroup of AUT(G). Analogously,
the weighted graph G is called weight-transitive if for all x, y ∈ V there is
γ ∈ AUT(G, w) such that γx = y. From now on we assume that G is weight-
transitive. We write

R1 := max
{
w(o, x) | o ∼ x

}
and r1 := min

{
w(o, x) | o ∼ x

}
.

The weight of a path [x0, x1, . . . , xn] is
∑n

i=1 w(xi−1, xi) (while its length
is n). Moreover, a metric on G denoted by d(x, y) for x, y ∈ V is given by the
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CHAPTER 5. LAMPLIGHTER RANDOM WALKS

minimal weight of all paths joining x and y. The ball B(x, r) centered at x
with radius r ≥ 0 is given by the set of all vertices x′ ∈ V with d(x, x′) ≤ r.

We now show how to get a compactification of G. A one-way infinite path is an
infinite sequence of vertices [x0, x1, x2, . . . ] such that xi ∼ xi+1 and xi 6= xj
for all i, j ∈ N0 with i 6= j. Two one-way infinite paths are equivalent if there
is a third one-way infinite path which meets both paths infinitely often. An
end of G is an equivalence class of one-way infinite paths. The set of ends
is denoted by ∂G. For finite F ⊆ V, denote by G \ F the graph with vertex
set V \ F and set of edges E ∩ (V \ F )2. By local finiteness, each one-way
infinite path has all but finitely many vertices in one connected component
of G \ F . If ω ∈ ∂G, then for each k ∈ N0 there is exactly one connected
component Ck(ω) of G \ B(o, k) such that all one-way infinite paths in ω
end up in Ck(ω). The completion G∪∂G becomes a compact space with the
discrete topology on G, while a neighbourhood basis of ω ∈ ∂G is given by
the sets Ck(ω).

Assume now that there sits a lamp at each vertex of G, which can be switched
off or on, encoded by elements of Z2 := Z/2Z: ‘0’ represents the state ‘off’
and ‘1’ the state ‘on’. We think of a lamplighter starting at o with all lamps
off, walking along G and switching lamps on and off. To describe the config-
uration of the lamp states we use functions η : V → Z2 with finite support.
Moreover, the set of finitely supported configurations of lamps is given by

N :=
{
η : V → Z2

∣∣ card supp(η) <∞
}
.

Denote by 0 the zero function and by
�
x the indicator function w.r.t. x ∈ V,

that is,
�
x(x) = 1 and

�
x(y) = 0 for y ∈ V \ {x}. We now consider the

Lamplighter Graph Z2 o G with vertex set N × V and the adjacency relation
given by

(η, x) ∼L (η′, x′) ⇐⇒
{
x ∼ x′ and η = η′, or

x = x′ and η′ = η ⊕ �
x

for all (η, x), (η′, x′) ∈ N×V , where ⊕ is the componentwise addition modulo
2. The graph Z2 o G is again transitive; see Woess [44, Proposition 1.1]. We
lift d(·, ·) to a (pseudo-) metric dZ2 oG(·, ·) on Z2 oG by assigning the following
weights to the edges of Z2 o G: if (η, x) ∼L (η′, x′) with x 6= x′, then the
corresponding edge has weight w(x, x′); we assign to the remaining edges
the arbitrary, but fixed value δL ≥ 0, that is, dZ2oG

(
(η, x), (η ⊕ �

x, x)
)

= δL
for all (η, x) ∈ N ×V . The distance of (η, x) and (η ′, x′) is then the minimal
weight of all paths in Z2 o G joining both elements. We write

|(η, x)| := dZ2oG
(
(0, o), (η, x)

)
= d̂(η, x) + δL · card supp(η),

where d̂(η, x) is the weight of an optimal ‘travelling salesman’ tour on G from
o to x with visiting each point in supp(η). Obviously, it is d(o, x) ≤ |(η, x)|.
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5.2. RANDOM WALKS ON LAMPLIGHTER GRAPHS

Note that dZ2oG(·, ·) is only a pseudo-metric if δL = 0. We will show in the
next section that Z2 o G is also weight-transitive.

5.2 Random Walks on Lamplighter Graphs

In this section we show how to lift a random walk on G in a natural way to
a random walk on Z2 o G. For this purpose, we consider a transient random
walk with bounded range on G, called base random walk, starting at o and
governed by a transition matrix P0, where single step and n-step transition

probabilities are denoted by p0(x, y) and p
(n)
0 (x, y) for x, y ∈ V . We make

again the basic assumption that x ∼ y implies p0(x, y) > 0. To obtain a
space-homogeneous Markov chain not only with respect to the adjacency
relation but also with respect to the weights of the edges, we assume that
there is a subgroup Γ of AUT(G, w) acting weight-transitively on G such that
x ∼ y implies p0(x, y) = p0(γx, γy) for all γ ∈ Γ. As P0 has bounded range,
we may add edges between non-neighbours x and y with weight d(x, y), if
p0(x, y) > 0, and obtain a new weight-transitive graph, on which we may
consider the random walk. Thus, we may assume w.l.o.g. that for x 6= y
we have p0(x, y) > 0 if and only if x ∼ y. By space-homogeneity and local
finiteness, there is ε0 > 0 such that p0(x, y) ≥ ε0 for all neighbours x, y ∈ V.

In order to lift P0 to a suitable random walk on Z2 o G, we introduce a
family of discrete probability measures (µx)x∈V on N satisfying the following
conditions:

(i) There is a number R2 ≥ 0 such that µx(η) > 0 implies d(x, y) ≤ R2

for all y ∈ supp(η), that is, each µx has finite support.

(ii) The space homogeneity property holds, that is, for each γ ∈ Γ we have
µγx(γη) = µx(η), where (γη)(y) := η(γ−1y) for y ∈ V .

(iii) We assume ζ := µx(0) > 0 for all x ∈ V .

(iv) For sake of simplicity, we assume that for each x ∈ V there is some
ηx ∈ N with ηx(x) = 1 and µx(ηx) > 0.

The measures µx describe laws for switching lamps in some bounded neigh-
bourhood of x when standing at x. Condition (iv) is no real restriction:
assuming that each lamp can be switched on and off by the lamplighter
with positive probability, one can fix for each vertex x ∈ V another vertex
y ∈ V at bounded distance from x such that the lamp at x can be switched
with positive probability when standing at y. To avoid constructing detours
to y, if we want to switch the lamp at x, we assume that condition (iv)
holds, although it is not necessary for our results.
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Actually, it is sufficient to define µo such that for each γ ∈ Γ with γo = o the
equation µo(γη) = µo(η) holds. As Γ acts transitively on G, the measures
µx can be retrieved by µx(γη) = µo(η) for γ ∈ Γ with γo = x. As µo has
finite support, there is some ξ0 > 0 such that µx(η) ≥ ξ0 for all x ∈ V and
all η ∈ supp(µx). For instance, if µx(

�
x) = p and µx(0) = 1 − p for any

p ∈ (0, 1), then the requested conditions hold.

Now we can define a lamplighter random walk P on Z2 o G by the following
transition probabilities:

p
(
(η, x), (η′, x′)

)
:=

∑

η1,η2∈N ,
η1⊕η2=η⊕η′

µx(η1) · p0(x, x
′) · µx′(η2).

This random walk corresponds to the model (‘Switch-Walk-Switch’), where
– in one step – the lamplighter may flip some lamp states in the neigh-
bourhood of his actual position x (according to the probability measure
µx), then walks to a random vertex x′ and may flip the lamp states in a
neighbourhood of x′ (according to µx′). The corresponding n-step transition
probabilities are denoted by p(n)(·, ·). The lamplighter random walk is de-
scribed by the sequence of random variables (Zn)n∈N0 . More precisely, we
write Zn =

(
ηn, Xn

)
, where ηn is the random configuration at time n and

Xn is the random vertex where the lamplighter stands at time n. Initially,
Z0 = (0, o). We denote by P(η,x)[ · ] the probability measure that governs the
random walk starting at (η, x) instead of (0, o).

Proposition 5.1. There is a subgroup Γ′ of AUT(Z2 oG) acting transitively
on Z2 o G such that for all γ ∈ Γ′, (η, x), (η′, x′) ∈ N × V

dZ2oG
(
γ(η, x), γ(η′, x′)

)
= dZ2oG

(
(η, x), (η′, x′)

)

and
p
(
γ(η, x), γ(η′, x′)

)
= p
(
(η, x), (η′, x′)

)
.

Proof. We follow Woess [44, Section 1.2] to construct Γ′. Define

Φ :=
{ �

A | A ⊆ V finite
}
,

where
�
A is the indicator function w.r.t. the set A, that is,

�
A(x) = 1, if

x ∈ A, and
�
A(x) = 0 otherwise. Then Φ becomes a group when equipped

with the pointwise addition modulo 2. For
�
A ∈ Φ, γ ∈ Γ and (η, x) ∈ N×V

we define an action of (
�
A, γ) on N × V by

(
�
A, γ)(η, x) := (

�
A ⊕ (γη), γx),

where (γη)(y) := η(γ−1y) for y ∈ V . Moreover, with
�
B ∈ Φ and γ′ ∈ Γ the

composition is defined as
( �

A, γ
)( �

B, γ
′) :=

( �
A ⊕ (γ

�
B), γγ′

)
.
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5.2. RANDOM WALKS ON LAMPLIGHTER GRAPHS

With this operation we obtain the semi-direct product Γ′ := ΦoΓ, which is a
subgroup of AUT(Z2 oG) and acts transitively on Z2 oG; compare with Woess
[44, Proposition 1.1(a)]. We now show that each automorphism of ΦoΓ maps
edges to edges with the same weight, from which the first equation of the
proposition follows directly. If (

�
A, γ) ∈ Φ o Γ and η ∈ N , x, y ∈ V with

x ∼ y, then

d
(
(

�
A, γ)(η, x), (

�
A, γ)(η, y)

)

= d
(
(

�
A ⊕ (γη), γx), (

�
A ⊕ (γη), γy)

)

= d
(
(η, x), (η, y)

)
.

Furthermore:

d
(
(

�
A, γ)(η, x), (

�
A, γ)(η ⊕

�
x, x)

)

= d
(
(

�
A ⊕ (γη), γx), (

�
A ⊕ (γ(η ⊕ �

x)), γx)
)

= d
(
(

�
A ⊕ (γη), γx), (

�
A ⊕ (γη) ⊕ �

γx, γx)
)

= δL = d
(
(η, x), (η ⊕ �

x, x)
)
.

Now we prove the second of the proposed equations. Let (η ′, x′) ∈ N × V.
For η1, η2 ∈ N with η1 ⊕ η2 = η ⊕ η′ and v ∈ V we have modulo 2

(γη1)(v) + (γη2)(v) = η1(γ
−1v) + η2(γ

−1v)

= η(γ−1v) + η′(γ−1v)

= (γη)(v) + (γη′)(v).

By transitivity of P0 and space homogeneity of the µx, we can conlude:

p
(
(

�
A, γ)(η, x), (

�
A, γ)(η

′, x′)
)

=
∑

η1,η2∈N ,
γη1⊕γη2=(γη)⊕(γη′)

µγx(γη1) · p0(γx, γx
′) · µγx′(γη2)

=
∑

η1,η2∈N ,
η1⊕η2=η⊕η′

µx(η1) · p0(x, x
′) · µx′(η2)

= p
(
(η, x), (η′, x′)

)
.

Our random walk projects onto the two processes Xn on the graph G and ηn
on N , of which we can investigate convergence. Observe that by transience
each finite subset of V is visited only finitely often yielding that (ηn)n∈N0

converges pointwise to a random limit configuration η∞ : V → Z2, which is
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not necessarily finitely supported. On the other hand, Xn converges to a
random end in ∂G; in particular, d(o,Xn) goes to infinity.

By weight-transitivity of G and Proposition 5.1, it follows as an consequence
from Theorem 1.3 that there are constants `0, ` ∈ R≥ such that

`0 = lim
n→∞

d(o,Xn)

n
almost surely

and

` = lim
n→∞

|Zn|
n

almost surely.

The number `0 is the rate of escape or drift of the lamplighter random walk’s

projection onto G and ` is the rate of escape of the lamplighter random walk.
Our aim is to show that, under suitable assumptions on G, ` is strictly bigger
than `0, that is, the lamplighter random walk escapes faster to infinity than
its projection onto G. In general, the acceleration of the lamplighter random
walk is not obvious. Let us briefly mention an example for the case where
` = `0:

Example 5.2: Consider the Cayley graph of Z w.r.t. the generators ±1
equipped with a transient random walk, that is, p0(z, z + 1) = q ∈ (1/2, 1],
p0(z, z − 1) = 1 − q for all z ∈ Z. We consider the case δL = 0 and we set
µz(

�
z) = p ∈ (0; 1) and µz(0) = 1 − p. For η : Z → Z2, we write

η+(z) :=

{
η(z), if z ≥ 0

0, if z < 0
and η−(z) :=

{
η(z), if z < 0

0, if z ≥ 0
.

Then η = η+ ⊕ η− and, after the last visit to 0, |Zn| = |(η−n , 0)|+ |(η+
n , Xn)|.

As |(η+
n , Xn)| = d(0, Xn) and |(η−n , 0)| remains constant for large n, it follows

that ` = `0. Compare also with Bertacchi [1].
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Chapter 6

Acceleration of Lamplighter
Random Walks

In this chapter we will show that, under suitable assumptions, the lamp-
lighter random walk escapes faster to infinity than its projection onto the
base graph G, that is, we want to show ` > `0. For this purpose, we have to
distinguish if δL = 0, `0 > 0 respectively, or not. Assuming `0 > 0, the case
δL > 0 is discussed in the following section, while the case δL = 0 is investi-
gated in Section 6.2 for graphs with infinitely many ends (Section 6.2.1) and
for graphs with exactly two ends (Section 6.2.2). The remaining case `0 = 0
is discussed in Section 6.3, where the proposed inequality follows from results
of Kaimanovich and Vershik [15] and of Varopoulos [38]. Finally, we give in
Section 6.4 some additional remarks regarding extensions of the presented
results.

6.1 The Case δL > 0

In this section we consider the case that edges in Z2 o G corresponding to
neighbours (η, x) ∼L (η⊕ �

x, x) have weight δL > 0. Furthermore, we assume
`0 > 0 for the rest of this section. We want to prove ` > `0.

Setting R := R1 +R2 we define for k ∈ N0 the exit times

ek := min
{
m ∈ N

∣∣ ∀n ≥ m : d(o,Xn) ≥ kR
}
.

By transience, ek < ∞ holds almost surely for all k ∈ N0. Observe that we
have d(o,Xek

) < kR+R1. With this notion we obtain:

Lemma 6.1.

`0 = lim
k→∞

kR

ek
Po − a.s.
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Proof. We have almost surely

`0 = lim
k→∞

d(o,Xek
)

ek
= lim

k→∞
d(o,Xek

)

kR

kR

ek
.

Define the random variable wk := d(o,Xek
) − kR ≥ 0. As the random walk

has bounded range, wk is bounded by R1. Thus wk/k tends to zero, which
yields the claim.

The last lemma implies

` = lim
k→∞

|Zek
|

ek
= lim

k→∞
|Zek

|
kR

kR

ek
= `0 · lim

k→∞
|Zek

|
kR

. (6.1)

As `0 > 0, the limit `1 := limk→∞ |Zek
|/(kR) exists almost surely and is

almost surely constant. We will show that this limit is strictly bigger than
1, which will yield the proposed inequality ` > `0.

We introduce some further notation. For k ∈ N0, let be

Sk :=
{
x ∈ V

∣∣ kR ≤ d(o, x) < kR+R1

}

the R1-annulus at distance kR in G and

sk := min
{
n ∈ N

∣∣ Xn ∈ Sk
}

the hitting time of Sk. By transience, sk <∞ almost surely. For k ∈ N0, let
the pseudo-increments be

∆k :=

{
δL, if η∞(Xsk

) = 1

0, otherwise
.

Observe that ηn(Xsj
) remains constant for all n ≥ ek and all j < k. Thus,

we have for all k ∈ N

|Zek
| ≥ kR +

k−1∑

j=0

∆j ,

or equivalently,

|Zek
|

kR
≥ 1 +

1

kR

k−1∑

j=0

∆j . (6.2)

We will need the following lemma several times in the sequel:

Lemma 6.2. Let s ∈ R+ and x, y ∈ V with d(x, y) ≤ s. Then there is a
path in G from x to y of length at most bs/r1c.
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Proof. Consider a path [x = x0, x1, . . . , y = xm] inside G of minimal weight
from x to y. Hence,

s ≥ d(x, y) =

m∑

i=1

w(xi−1, xi) ≥ m · r1.

Dividing by r1 both sides of the inequality yields the lemma.

Now we want to state a lower bound for the probability P(η,x)[η∞(x) = 1]
for (η, x) ∈ N × V with η(x) = 1.

Lemma 6.3. There are κ ∈ N and p̃ > 0 such that for all (η, x) ∈ N × V
with η(x) = 1

P(η,x)[η∞(x) = 1] ≥
(
ε0 ζ

2
)κ·p̃ > 0.

Proof. Let (η, x) ∈ N × V with η(x) = 1. By transience and bounded
range of the random walk P0, there is at least one vertex y ∈ V satisfying
R2 < d(x, y) ≤ R1 +R2 such that

p̃ := P(η,y)[∀n ≥ 1 : Xn /∈ B(x,R2)] > 0.

Moreover, there is a path from x to y inside the graph G of length at most
κ := b(R1 +R2)/r1c. Thus, the probability of walking from (η, x) to (η, y)
with no lamp switches during this walk is at least

(
ε0 ζ

2
)κ

. By transitivity,
the choice of p̃ and κ is independent of (η, x). Thus follows the claim.

Recall that µx(η) ≥ ξ0 for all x ∈ V and η ∈ suppµx. By changing the lamp
state at x, when leaving x for the first time, the last lemma also yields

P(η,x)[η∞(x) = 1] ≥ ξ0
ζ
·
(
ε0 ζ

2
)κ·p̃

for (η, x) ∈ N×V with η(x) = 0. The next lemma gives a non-trivial uniform
lower bound for E[∆k]:

Lemma 6.4. There is B1 > 0 such that E[∆k] ≥ B1 for all k ∈ N0.

Proof. In order to bound P[∆k = δL] uniformly from below, we decompose
according to all possible states of Xsk

, where the lamp – if necessary –
will be switched on, followed by a walk with no lamp switches to some
vertex y ∈ V \ B(Xsk

, R2), from which the random walk does not return to
B(Xsk

, R2).

By vertex-transitivity and Lemma 6.3, the probability of starting in Xsk

with ηsk
(Xsk

) = s ∈ Z2 and walking to some vertex y ∈ V \B(Xsk
, R2) with

no lamp switches until reaching y and no visit in B(Xsk
, R2) after reaching

y is at least (ξ0/ζ)
1−s·

(
ε0 ζ

2
)κ·p̃.
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Observe that we have by transience:
∑

x∈Sk

∑

n≥0

P[sk = n,Xn = x] = P[sk <∞] = 1.

We get:

P[∆k = δL]

=
∑

x∈Sk

∑

n≥0

∑

x1,...,xn−1∈V,
d(o,xj)<kR

∑

i∈{0,1}
P

[
X1 = x1, . . . , Xn−1 = xn−1,
Xn = x, ηn(x) = i, η∞(x) = 1

]

≥
∑

x∈Sk

∑

n≥0

∑

x1,...,xn−1∈V,
d(o,xj)<kR

P

[
X1 = x1, . . . , Xn−1 = xn−1,

Xn = x, ηn(x) = 1

]
·
(
ε0 ζ

2
)κ·p̃

+P

[
X1 = x1, . . . , Xn−1 = xn−1,

Xn = x, ηn(x) = 0

]
· ξ0
ζ
·
(
ε0 ζ

2
)κ·p̃

≥
∑

x∈Sk

∑

n≥0

P[sk = n,Xn = x] · min{ξ0/ζ, 1}·
(
ε0 ζ

2
)κ·p̃

= ξ0 · εκ0 · ζ2κ−1 · p̃ =: b1. (6.3)

We obviously have b1 > 0, and with B1 := δL · b1 we get the inequality
E[∆k] ≥ B1 > 0.

Before we can prove the inequality `1 > 1, we need the following lemma:

Lemma 6.5. Suppose we are given a sequence of bounded, real-valued, non-
negative random variables (An)n∈N0 . For k ∈ N, let

Dk :=
1

k

k−1∑

j=0

Aj.

Then
E
[
lim sup
k∈N

Dk

]
≥ lim sup

k∈N

E[Dk].

Proof. We have 0 ≤ An ≤ c for some c ∈ R≥ and all n ∈ N0, and conse-
quently 0 ≤ Dk ≤ c for all k ∈ N. As

lim sup
k∈N

Dk = c− lim inf
k∈N

(
c−Dk

)
,

we can apply Fatou’s Lemma and obtain

E
[
lim sup
k∈N

Dk

]
= c−

∫
lim inf
k∈N

(
c−Dk

)
dP

≥ c− lim inf
k∈N

∫ (
c−Dk

)
dP = lim sup

k∈N

E[Dk].
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Now we can conclude:

Theorem 6.6. For the lamplighter random walk with respect to the tran-
sitive, connected, locally finite base graph G and its metric d(·, ·), assuming
δL > 0,

` ≥
(
1 +

δL b1
R

)
· `0 > `0,

where R = R1 +R2 and b1 is given by equation (6.3).

Proof. By Lemma 6.4, we have the inequality

E

[k−1∑

j=0

∆j/(kR)

]
≥ δL b1/R > 0.

Choose An := ∆n/R and apply Lemma 6.5: by equation (6.2), we get
`1 ≥ 1 + lim supk∈NDk, providing

`1 ≥ 1 + E[lim sup
k∈N

Dk] ≥ 1 + lim sup
k∈N

E[Dk] ≥ 1 +
δL b1
R

> 1.

The rest follows from equation (6.1).

6.2 The Case δL = 0

We distinguish if G has either exactly two or infinitely many ends. Recall
that – in the transitive case – having three or more ends is equivalent to
having infinitely many ends. For the rest of this section we assume `0 > 0.
For graphs with exactly one end and `0 > 0, the question, when ` > `0
holds, remains open.

6.2.1 Graphs with Infinitely many Ends

In this section we want to prove ` > `0 in the – more delicate – case δL = 0
under the assumptions that `0 > 0 and G has infinitely many ends. To prove
the claim we adjust the considerations of the previous section.

As G is transitive and has infinitely many ends, there is some r ∈ N0 such
that for every x ∈ V the graph G\B(x, r) consists of at least three different,
infinite, connected components. For n ∈ N0, denote by C(x, n) the set of
infinite, connected components of G\B(x, n). We identify these components
with their sets of vertices. By transience, there is at least one C ∈ C(o, r)
such that the base random walk travels into C and returns to the ball B(o, r)
with a probability strictly smaller than 1. Considering the base random walk,
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we denote by F
(
x,B(o, r)

)
the probability of starting at x ∈ V and visiting

after finite time an element of the set B(o, r). Define

F̄ := max

{
F
(
y,B(o, r)

) ∣∣∣∣
y ∈ V, r < d(o, y) ≤ r +R1,

F
(
y,B(o, r)

)
< 1

}
.

Observe that F̄ < 1 and that for all C ∈ C(o, r) and all y1, y2 ∈ C it is
F (y1, B(o, r)) < 1 if and only if F (y2, B(o, r)) < 1. We now distinguish
whether

Λ := card
{
C ∈ C(o, r)

∣∣ there is x ∈ C with F (x,B(o, r)) < 1
}
≥ 2

or not. In other words, we distinguish whether the projection of the random
walk onto G converges to a deterministic end (Λ = 1) or not (Λ ≥ 2).

6.2.1.1 Case Λ ≥ 2

Define the function ψ : N0 → N0 by ψ(n) = n(2r + R1 + 1) and also for
k ∈ N0 the exit times

ek := min
{
m ∈ N

∣∣ ∀n ≥ m : d(o,Xn) ≥ ψ(k)
}
, (6.4)

the midpoint times

mk := min
{
m ∈ N

∣∣ m ≥ ek, d(o,Xm) ≥ ψ(k) + r
}

and Mk := Xmk
. By transience, ek,mk < ∞ hold almost surely. Observe

that B(Mk, r)∩B(Mk−1, r) = ∅ andXek+1
/∈ B(Mk, r). See Figure 6.1. The

M
k

(k)ψ ψ (k+1) ψ (k+2) ψ (k+3)

M M
k+1 k+2

  
1

  
1

  
1

             r                     R                        r                     R              1             r                     R                      r         1         r         1         r         1

Figure 6.1: Exit and midpoint times

idea is to ‘construct’ non-intersecting balls between consecutive exit points
Xek

and Xek+1
, from which we create deviations yielding larger distances

with positive probability. Analogously to the previous section we obtain

`0 = lim
k→∞

ψ(k)

ek
and ` = `0 · lim

k→∞
|Zek

|
ψ(k)

. (6.5)
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6.2. THE CASE δL = 0

As `0 > 0, the limit `1 := limk→∞ |Zek
|/ψ(k) exists almost surely and is

almost surely constant. We show that this limit is strictly bigger than 1,
yielding ` > `0. For this purpose, we proceed by bounding |Zek

| from below.

We start with some simple graph theoretical properties: if w, x, y ∈ V such
that o, w /∈ B(y, r) and x satisfying d(y, x) ≤ 2r + R2 + 1 is not in one of
the components of C(y, r) containing o or w, then for all y1, y2 ∈ B(y, r) we
have

d(o, w) ≤ d(o, y1) + d(y1, x) + d(x, y2) + d(y2, w). (6.6)

See Figure 6.2. The distances d(y1, x) and d(x, y2) are bounded from below

o y

y 21 y

x

w

Figure 6.2: Deviation into a component of C(y, r)

by r + 1. If a minimal-weighted path [o, w1, . . . , w] in G from o to w crosses
the ball B(y, r), where ws is the first vertex of the path in B(y, r) and wt
the last vertex in B(y, r), then d(ws, wt) ≤ 2r. Due to this inequality and
relation (6.6) a minimal-weighted tour from o to w with visit at x before
reaching w has a weight at least d(o, w)+2. It is even not possible to switch
the lamp at x, when walking on a minimal-weighted tour from o to w. To
get a lower bound for |Zn| with n ≥ ek, we are now interested in counting
these ‘+2’ increments, where Zn plays the role of w and the Mj ’s, j < k,
the role of y. For this purpose, we introduce further notation: we write

Ĉ(Mk, r) :=
{
C ∈ C(Mk, r)

∣∣ o,Xek+1
/∈ C

}
.

If k ∈ N0, x ∈ C ∈ Ĉ(Mk, r) with d(Mk, x) ≥ 2r + R2 + 1 and η∞(x) = 1,
then ∆k,x := 2. Otherwise we set ∆k,x := 0. Then the pseudo-increments are
defined as

∆k := max
x∈V

∆x,k.

Observe that ∆k,x = 2 implies ∆l,x = 0 for all l 6= k, that is, each x ∈ V
causes at most one ∆k to have value 2. Note also that from time ek on-
ward it is impossible to switch a lamp at any x ∈ C ∈ Ĉ(Mj , r) with
d(Mj , x) ≥ 2r +R2 + 1 for all j < k. In other words, the values ∆j for
j < k depend only on the process up to time ek.
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When computing |Zn| for n ≥ ek, the pseudo-increment ∆j, j < k, is a lower
bound for the distance increase caused by the possibly necessary deviation
into some component C ∈ Ĉ(Mj , r), which may be needed to reach Zn with
start at (0, o). As shown above, if ∆j = 2 then |Zn| ≥ d(o,Xn) + 2. As the
balls B(Mj , r), j < k, are pairwise disjoint, we obtain for k ≥ 1, analogously
to the previous section,

|Zek
|

ψ(k)
≥ 1 +

1

ψ(k)

k−1∑

j=0

∆j. (6.7)

Our next aim is to bound P[∆k = 2], and thus E[∆k], uniformly from below
by a non-zero constant.

Proposition 6.7. There is B2 > 0 such that P[∆k = 2] ≥ B2 for all k ∈ N0.

Proof. We sum over all possibilities to hit the annulus

Rk :=
{
x ∈ V

∣∣ ψ(k) + r ≤ d(o, x) < ψ(k) + r +R1

}
,

which must be hit almost surely. The hitting point of this set should become
Mk under our construction. Furthermore, denote by E(n), n ∈ N0, the event
that there are C,D ∈ C(Xn, r) with o /∈ C,D and C 6= D such that

- from time n onwards the lamplighter walks inside B(Xn, r)∪C to some
y ∈ C with d(Xn, y) ≥ 2r + R2 + 1 without switching the lamp at y
during this walk,

- then switches the lamp at y and walks inside B(Xn, r)∪C back to Xn

without switching the lamp at y any more,

- followed by exiting the ball B(Xn, r) into D, from where it does not
return to B(Xn, r).

See Figure 6.3. Observe that the assumption Λ ≥ 2 ensures that C and D
can be chosen in the required way such that P[E(n)] > 0 for all n ∈ N0. We
now want to give a uniform lower bound for the probability of E(n). Write
s := 2r + R2 + 1. For each C ∈ C(Xn, r) there is at least one vertex y ∈ C
with s ≤ d(Xn, y) < s+R1, as C is infinite. By Lemma 6.2, there is a path
of length at most κ̄ := b(s + R1)/r1c from Xn to y, which lies completely
inside B(Xn, r) ∪ C. Hence, the probability of walking inside B(Xn, r) ∪ C
from Xn to some y without switching any lamps during this walk is at least
(ε0 ζ

2)κ̄. The probability of walking inside B(Xn, r)∪C from y toXn without
switching any lamps except switching the lamp at Xn in the first step is at
least εκ̄0 · ξ0 · ζ2κ̄−1, as µy(η) ≥ ξ0 for some η ∈ N with η(y) = 1. Finally, the
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Zek

r

M Zo
e

C

D

k k+1

kB(M ,r)

Figure 6.3: Ball around Mk

probability of walking from Xn to the outside of B(Xn, r) with no return to
B(Xn, r) is at least εr̄0 · (1 − F̄ ), where r̄ := b(r +R1)/r1c. Thus, we obtain

P[E(n)] ≥
∑

x∈V
P[Xn = x] ·

(
ε0 ζ

2
)κ̄ · εκ̄0 · ξ0 · ζ2κ̄−1 · εr̄0 · (1 − F̄ )

= ε2κ̄+r̄
0 · ξ0 · ζ4κ̄−1 · (1 − F̄ ) =: B2. (6.8)

In particular, P[E(n) | Xn = x] ≥ B2 for all x ∈ V . Denote by Tk the time
of the first visit in the annulus Rk. It is P[Tk <∞] = 1 and ηTk

(y) = 0 for
all y ∈ C ∈ C(XTk

, r) with o /∈ C and d(XTk
, y) ≥ 2r+R2 + 1. Recall in the

following that any path inside B(Mk, r) lies in {x ∈ V | d(o, x) ≥ ψ(k)} and
that Mk = Xn, if Tk = n and the event E(n) holds. Now we can conclude:

P[∆k = 2]

≥
∑

x∈Rk

∑

n≥0

∑

x1,...,xn−1∈V,
d(o,xi)<ψ(k)+r

P[X1 = x1, . . . , Xn−1 = xn−1, Xn = x,E(n)]

≥
∑

x∈Rk

∑

n≥0

∑

x1,...,xn−1∈V,
d(o,xi)<ψ(k)+r

P[X1 = x1, . . . , Xn−1 = xn−1, Xn = x] ·B2

= P[Tk <∞] ·B2 = B2 > 0.

The last proposition yields:

Corollary 6.8. We have E[∆k] ≥ 2 ·B2 for all k ∈ N0.

�
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Now we can prove:

Theorem 6.9. For the lamplighter random walk on the transitive, con-
nected, locally finite graph G with infinitely many ends, assuming that the
base random walk on G does not converge to a deterministic end and δL = 0,
we have

` ≥
(
1 +

2 ·B2

2r +R1 + 1

)
· `0 > `0,

where B2 is given by equation (6.8).

Proof. Define An := ∆n/(2r + R1 + 1). In view of Proposition 6.7, the rest
follows analogously to the proof of Theorem 6.6.

6.2.1.2 Case Λ = 1

Assume now Λ = 1, that is, the random walk’s projection onto G converges
to a deterministic end ω ∈ ∂G almost surely; compare with Woess [42]. In
this case it is not ensured that the component D in the proof of Proposition
6.7 can be chosen in the required way such that P[E(n)] > 0. Thus, we have
to construct Mk in a different way.

For each k ∈ N0 there is exactly one Dk ∈ C
(
o, ψ(k)

)
such that the equation

P
[
∃m∀n ≥ m : Zn ∈ Dk

]
= 1 holds. Let

Ek :=
{
x ∈ Dk

∣∣∣ ψ(k) + r < d(o, x) ≤ ψ(k) + r +R1

}
.

We replace the midpoint times of the last subsection by the hitting times of
the sets Ek:

mk := min
{
n ∈ N

∣∣ Xn ∈ Ek
}
,

which is almost surely finite. Write again Mk := Xmk
. This construction

ensures that B(Mk, r) ⊆ Dk ∩B
(
o, ψ(k + 1)

)
and that there is exactly one

component C ∈ C(Mk, r) with Dk+1 ⊆ C. We write Ĉ(Mk, r) for the set of
all C ∈ C(Mk, r) with o /∈ C and Dk+1 6⊆ C. The pseudo-increments are now
given by

∆k :=





2, if there is C ∈ Ĉ(Mk, r) and x ∈ C

with d(Mk, x) ≥ 2r +R2 + 1 and η∞(x) = 1

0, otherwise

.

Each vertex x ∈ V may induce at most one of ∆k to have value 2. Moreover,
the lamp at any x ∈ C ∈ Ĉ(Mk, r) with d(Mk, x) ≥ 2r+R2 + 1 can not be
switched, if the lamplighter stands at some vertex in Dk+1. Thus, the value
of ∆k is determined if the lamplighter leaves B(Mk, r) with no further visit
to this ball. We get:
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Lemma 6.10. For all k ∈ N0,

P[∆k] ≥ B2 > 0,

where B2 is given by equation (6.8).

Proof. The random walk hits the set Ek almost surely. The rest follows
analogously to the proof of Proposition 6.7.

Using equation (6.5), we can conclude:

Theorem 6.11. For the lamplighter random walk on a transitive, connected,
locally finite graph G with infinitely many ends, assuming that the base ran-
dom walk converges to a deterministic end and δL = 0, we have

` ≥
(
1 +

2 · B2

2r +R1 + 1

)
· `0 > `0,

where B2 is given by equation (6.8).

Proof. Define the exit times as in equation (6.4). Then equations (6.5) and
the inequality (6.7) hold also in the case Λ = 1. Analogously to the proof of
Theorem 6.6 and 6.9 we obtain the proposed claim.

6.2.2 Two-ended Graphs

In this section, we want to prove ` > `0 under the assumptions that G

has exactly two ends and that all edges of G have weight 1. The latter
assumption is needed to create deviations yielding larger distances with
positive probability. If we drop this assumption of uniform weight 1 on the
edges and also the basic assumption that the subgroup Γ ⊆ AUT(G, w),
which acts weight-transitively on G, preserves transition probabilities, we
can construct a counterexample such that the proposed inequality does not
hold; see the end of this section. Furthermore, we assume that `0 > 0 and
that the uniform vertex degree deg(G) is at least 3. If the uniform vertex
degree is 2, then G becomes an infinite line, on which the Switch-Walk-
Switch lamplighter random walk has the same speed as its projection onto
G; see Example 5.2.

We adjust the considerations of the previous section. There is r ∈ N0

such that G \ B(o, r) has exactly two infinite, connected components, de-
noted by their set of vertices C1 and C2. The ends lying in C1 and C2

are denoted by ξ1 and ξ2, which are represented by one-way infinite paths[
o, x

(1)
1 , x

(1)
2 , . . .

]
and

[
o, x

(2)
1 , x

(2)
2 , . . .

]
such that d

(
o, x

(i)
n

)
= n for i ∈ {1, 2}

and n ∈ N. For k ≥ 3r + 2, the reduced graph G \ B
(
x

(i)
k−1−r, r

)
has
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 x k−1−r

D k,1,2

o

S k

C

C

D1

2

k,1,1

ξξ 12

Figure 6.4: Each path from o to ξi has to pass through B
(
x

(i)
k−1−r, r

)
.

also exactly two infinite, connected components, denoted by Dk,i,1, Dk,i,2

with ξi ending up in Dk,i,i. Observe that B
(
x

(i)
k−1−r, r

)
∪Dk,i,i ⊆ Ci. Thus,

cardCi∩Dk,i,j <∞ and o ∈ Dk,i,j with j ∈ {1, 2} \ {i}. For k ∈ N, we write
Sk := {x ∈ V | d(o, x) = k}. See Figure 6.4. We now want to show that for
k ≥ 3r+ 2 the set Sk ∩Dk,i,i has at least two elements and its diameter can
be uniformly bounded by a constant.

Lemma 6.12. If G is a two-ended, connected, transitive graph G with uni-
form vertex degree deg(G) ≥ 3, then r > 0.

Proof. Assume r = 0. We want to show that this implies that G has more
than two ends. If r = 0, then G\{x} has two infinite, connected components
for each x ∈ V , identified by their set of vertices D1, D2; see Figure 6.5.
As deg(G) ≥ 3, there are three neighbours y1, y2, y3 ∈ V of x such that
w.l.o.g. y1 ∈ D1 and y2, y3 ∈ D2. Furthermore, there is a path inside D2

from y2 to y3. The reduced graph G \ {y2} has also two infinite, connected
components, denoted byD3, D4. Observe that w.l.o.g. D1∪{x} ⊆ D3. Analo-
gously, G \ {y3} has two infinite, connected components D5, D6 such that
w.l.o.g. D1 ∪ D4 ∪ {x} ⊆ D5. Observe that D1, D4 and D6 are pairwise
disjoint. Thus, G \B(x, 1) has at least three infinite connected components.
This yields the proposed claim, as G is assumed to have exactly two ends.

The last lemma yields that cardSk ∩ Dk,i,i ≥ 2 for k ≥ 3r + 2: if it
is Sk ∩Dk,i,i = {x} for some x ∈ V, then each path ω ∈ ξi has to pass
through x. But this means that G \ {x} would have two infinite, connected
components, providing r = 0. This is a contradiction to the previous lemma.
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Figure 6.5: Sketch to the proof of Lemma 6.12

Lemma 6.13. If k ≥ 3r+2 and x ∈ Sk∩Dk,i,i, then d
(
x, x

(i)
k−1−r

)
≤ 3r+1.

Proof. For k ≥ 3r + 2, consider the ball Bk,i := B
(
x

(i)
k−1−r, r

)
. By construc-

tion of Bk,i and Dk,i,i, each path from o to any x ∈ Sk ∩Dk,i,i has to pass
through the ball Bk,i. Consider now a shortest path ω = [ω0, . . . , ωk] from o
to some vertex ωk ∈ Sk ∩Dk,i,i. Let ωt be the last vertex of ω lying inside
Bk,i. The vertex ωt+1, the first vertex of ω lying outside Bk,i after the visit
in Bk,i, has a distance to o of at least k − 2r. Thus,

d
(
x, x

(i)
k−1−r

)
≤ d(x, ωt+1)+d(ωt+1, ωt)+d

(
ωt, x

(i)
k−1−r

)
≤ 2r+1+r = 3r+1.

From the proof of the last lemma it follows that the diameter of each
Sk ∩Dk,i,i can be uniformly bounded by 6r + 2. Now the exit times are
defined as

ek := min
{
m ∈ N

∣∣ ∀n ≥ m : d(o,Xn) ≥ k +R2 + 1
}

for k ≥ 3r + 2. Furthermore,

∆k :=





1, if X∞ = ξi implies

∃x, y ∈ Sk ∩Dk,i,i, x 6= y, with η∞(x) = η∞(y) = 1

0, otherwise

.

When computing |Zn| with n ≥ ek, ∆k is again a lower bound for the
distance increase caused by a possibly necessary deviation from one point
in Sk ∩Dk,i,i to another one in the same set, because ∆k = 1 implies that a
shortest tour from (0, o) to Zn causes the lamplighter to visit Sk ∩Dk,i,i at
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least twice. Observe that the value of ∆k depends only on the process up to
time ek. Analogously to the previous section, we get for k ≥ 3r + 2

|Zek
|

k +R2 + 1
≥ 1 +

1

k +R2 + 1

k∑

j=3r+2

∆j .

We now give a lower bound for P[∆k = 1]:

Lemma 6.14. There is B3 > 0 such that for k ≥ 3r + 2

P[∆k = 1] ≥ B3.

Proof. Initial remark before the proof: it can be shown that (Xn)n∈N0 con-
verges almost surely to a deterministic end. However, we shall not need this
fact in the proof of this lemma.

First,

P[∆k = 1] = P[X∞ = ξ1] · P
[
∆k = 1 | X∞ = ξ1

]

+P[X∞ = ξ2] · P
[
∆k = 1 | X∞ = ξ2

]
. (6.9)

Assume now w.l.o.g. that [X∞ = ξ1] has positive probability and we assume
that this event holds. We construct a tour on this event to establish ∆k = 1
with positive probability independently of k. The set Sk∩Dk,1,1 is hit almost
surely on the event [X∞ = ξ1] and we denote by Tk its hitting time. Assume
now that x is the hitting point. Then there is a path of length at most 6r+2
to some other point y ∈ Sk∩Dk,1,1. Thus, walking from x with configuration
η to y with – if necessary – switching the lamps at x and y on and without
switching any further lamp on the route to y has a probability of at least

(ξ0
ζ

)η(x)
· (ε0 ζ2)6r+2 ·

(ξ0
ζ

)η(y)
.

From y it is possible to reach the vertex w := x
(1)
k+R2+1 ∈ Sk+R2+1 ∩C1 on a

path of length at most 4r + 3 +R2, as

d(y, w) ≤ d
(
y, x

(1)
k−r−1

)
+ d
(
x

(1)
k−r−1, w

)
≤ (3r + 1) + (r + 2 +R2).

Thus, the probability of walking from y to w without switching any lamps
is at least (ε0 ζ

2)4r+3+R2 . The ball B(w, r) can be left into the infinite com-

ponent not containing o on the path [w, x
(1)
k+R2+2, . . . , x

(1)
k+R2+r+2] of length

r+1. Having left this ball into this component, the lamplighter returns into
B(w, r) with a probability strictly smaller than 1, namely with a probability
of at most F̂ , where

F̂ := max
{
F
(
v,B(o, r)

) ∣∣ v ∈ Sr+1, F
(
v,B(o, r)

)
< 1
}
< 1.
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Observe that the inclusion of events [X∞ = ξ1] ⊆ [Tk <∞] holds, providing

∑

x∈Sk∩Dk,1,1

∑

n∈N

P
[
Tk = n,Xn = x

]
= P[Tk <∞] ≥ P[X∞ = ξ1].

Thus, we can estimate:

P
[
∆k = 1 | X∞ = ξ1

]

≥ 1

P[X∞ = ξ1]

∑

x∈Sk∩Dk,1,1

∑

n∈N

P
[
Tk = n,Xn = x

]

·
(ξ0
ζ

)η(x)
· (ε0ζ2)6r+2 ·

(ξ0
ζ

)η(y)
· (ε0ζ2)4r+3+R2 · εr+1

0 ·
(
1 − F̂

)

≥ ξ20 · ε11r+6+R2
0 · ζ20r+8+2R2 ·

(
1 − F̂

)
=: B3. (6.10)

This together with equation (6.9) finishes the proof.

The last lemma yields that E[∆k] ≥ B3. Now we can state:

Theorem 6.15. For the Switch-Walk-Switch lamplighter random walk on a
transitive, connected, locally finite graph G with uniform vertex degree of at
least 3, exactly two ends and uniform weight 1 on its edges, assuming `0 > 0
and δL = 0,

` ≥
(
1 +B3

)
· `0 > `0,

where B3 is given by equation (6.10).

Proof. The proof works analogously to the proofs of Theorems 6.6 and 6.9.

Besides the two-way-infinite line we give another counterexample where the
Switch-Walk-Switch lamplighter random walk has same speed as its projec-
tion onto the base graph:

Example 6.16: Consider the ‘ladder’ given by the Cayley graph of Z × Z2

w.r.t. the generators (±1, 0) and (0, 1). For z ∈ Z assign the weights as
follows:

w
(
(2z, 0), (2z + 1, 0)

)
= 1,

w
(
(2z + 1, 0), (2z + 2, 0)

)
= 5,

w
(
(2z, 1), (2z + 1, 1)

)
= 5,

w
(
(2z + 1, 1), (2z + 2, 1)

)
= 1,

w
(
(z, 0), (z, 1)

)
= 1.

Then this weighted graph is transitive. The associated metric is denoted by
dZ×Z2(·, ·). A minimal weighted path from (0, 0) to (z,m) ∈ Z × Z2 visits
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5              1                5               1                5               1              5

1                1               1               1               1                1

1             5               1               5                1               5              1

(0,0)

(4,1)

Figure 6.6: A minimal-weighted path from (0, 0) to (4, 1) in Z × Z2

all points (z′,m′) with 0 < |z′| < |z|, sgn(z) = sgn(z′) and m′ ∈ Z2. See
Figure 6.6.

Let p ∈ (1/4; 1/2). We equip Z × Z2 with a transient random walk defined
by the following transition probabilities:

p0

(
(z, z′), (z + 1, z′)

)
:= p, p0

(
(z, z′), (z − 1, z′)

)
:=

1

2
− p,

p0

(
(z, z′), (z, z′ + 1)

)
:=

1

2
for z ∈ Z, z′ ∈ Z2.

Observe that there is no subgroup Γ′ of AUT(Z×Z2, w) acting transitively
on Z × Z2 such that the transition probabilities are Γ′-invariant. Recall
that we assumed this property throughout our computations. Define now
‖(z, z′)‖ := |z| + z′ with z′ interpreted as an element of Z. The base ran-
dom walk starting in (0, 0) is again denoted by (Xn)n∈N0 and the associated
lamplighter random walk by (ηn, Xn)n∈N0 . As an easy consequence of King-
man’s subadditive ergodic theorem, ‖Xn‖/n converges almost surely to some
positive constant c ∈ (0; 1). Observe now that

2 ‖Xn‖ − 1 ≤ dZ×Z2

(
(0, 0), Xn

)
≤ 2 ‖Xn‖ + 1.

Thus, limn→∞ dZ×Z2

(
(0, 0), Xn

)
/n = 2c almost surely. One can show analo-

gously to Example 5.2 that |(ηn, Xn)|/n converges also to 2c almost surely,
that is, the lamplighter does not escape faster than its projection onto Z×Z2.

6.3 The Case `0 = 0

We explain in this section that also lamplighter random walks arising from
transient base random walks with zero speed escape with non-zero speed
to infinity. For transient base random walks on finitely generated groups
with zero drift w.r.t. the word metric, Dyubina [9] proved non-zero drift
of the lamplighter random walk. Here, we explain the acceleration of the
lamplighter for our more general case of graphs and (pseudo-)metrics.
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6.3. THE CASE `0 = 0

Denote by πn(η, x) := p(n)
(
(0, o), (η, x)

)
the n-step transition probability

measure of the lamplighter random walk. Recall the following definitions:

(i) The entropy of the probability measure πn is

H(πn) := −
∑

(η,x)∈N×V
πn(η, x) log πn(η, x).

(ii) The asymptotic entropy is

h := lim
n→∞

H(πn)

n
.

(iii) The growth rate of Z2 o G is

gr
(
Z2 o G

)
:= lim

n→∞
log cardB(o, n)

n
.

In general, the entropy and the growth rate exist for random walks on tran-
sitive graphs; see Kaimanovich and Woess [17, Lemma 5.2] together with
Kingman’s subadditive Ergodic Theorem [20]. We need the following essen-
tial result about entropy applied to our case:

Proposition 6.17. It is

h ≤ ` · gr
(
Z2 o G

)
.

Moreover, h = 0 if and only if its Poisson boundary is trivial.

Proof. See Kaimanovich and Woess [17, Theorems 4.7, 5.3], where this is
proved in a straightforward way only for the case that d(·, ·) is the natural
graph metric. The proof adapts to our metric with weights.

Now we can conclude:

Theorem 6.18. For a transitive, connected, locally finite graph G equipped
with a transient, space-homogeneous random walk, the associated lamplighter
random walk has non-zero drift.

Proof. The mapping

(η, x) 7→ P(η,x)[η∞(o) = 0]

defines a non-constant bounded harmonic function. Thus, the Poisson bound-
ary is non-trivial, that is, h > 0; see Kaimanovich [14, Section 1.3.1] and
Kaimanovich and Woess [17, Theorem 4.7]. Proposition 6.17 finishes the
proof.

Observe that we do not need the assumption from the previous section that
G must have at least two ends.
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6.4 Remarks

6.4.1 Switch-Walk-Switch Random Walk

Consider a transitive, connected, locally finite graph G equipped with a near-
est neighbour random walk P0 in the sense of Section 5.1 such that `0 > 0.
We assign to each edge the weight 1 yielding that the corresponding distance
measure is the natural graph metric. Choose p ∈ (0, 1). Let µx(

�
x) = p and

µx(0) = 1 − p for every x ∈ V, yielding R2 = 0. Then the corresponding
lamplighter random walk is as follows: the lamplighter tosses a coin for de-
ciding whether to switch the lamp at his actual position with probability
p, followed by a walking step to a random neighbour vertex, followed by
tossing a coin again whether to switch the lamp at his destination vertex.
For (η, x) ∈ N × V, the distance |(η, x)| is then given by the length of a
shortest path from (0, o) to (η, x) inside Z2 oG, if we set δL = 1. In the case
δL = 0 the distance of (0, o) to (η, x) is given by |(η, x)| − supp(η).

In the case δL = 1 we get

` ≥
(
1 + min

{
p/(1 − p), 1

}
ε0 (1 − p) p̃

)
·`0,

where p̃ = P(0,y)[∀n ≥ 1 : Xn 6= o] for some y ∈ V such that y ∼ o and
p̃ > 0. In the case δL = 0 the set

{
x ∈ V | d(o, x) = ψ(k) + r

}
is hit almost

surely. Thus, assumming additionally that G has infinitely many ends, we
obtain analogously

` ≥
(
1 +

4

2r + 1
ε5r+3
0 p (1 − p) (1 − F̄ )

)
·`0. (6.11)

6.4.2 Walk-or-Switch Random Walk

There is another typical way to define a lamplighter random walk by the
following transition probabilities, where p ∈ (0, 1):

p
(
(η, x), (η′, x′)

)
:=

{
p · µx(η ⊕ η′), if x = x′

(1 − p) · p0(x, x
′), otherwise

.

At each step the lamplighter tosses a coin and decides either to switch some
lamps in the neighbourhood of his actual position or to walk to a ran-
dom neighbour vertex. The Theorems 6.6, 6.9, 6.11, 6.15 and 6.18 hold
analogously except from the adjustion of the constants b1, B2 and B3. In
Chapter 7, we will use this model to investigate a lamplighter random walk
on the homogeneous tree.
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6.4.3 Multi-State Lamps

The presented techniques for proving the acceleration of the lamplighter
random walks can also be applied in the case that there are more possible
lamp states encoded by elements of Z/rZ with r > 2. In this case one
may assign weights wj ≥ 0 to edges of pairs of neighbours of the form
(η, x) ∼ (η ⊕ (j

�
x), x) for j ∈ Z/rZ, j 6= 0. Then the Theorems 6.6, 6.9,

6.11, 6.15 and 6.18 hold analogously except for the necessity to adjust the
constants b1, B2 and B3 and to replace δL by minwj.

6.4.4 Markovian Distance

For (η, x) ∈ N × V, the Markovian distance |(η, x)|P is given by

min

{
m∑

i=1

w(xi−1, xi)

∣∣∣∣
[o, x1, . . . , xm−1, x] is a path from o to x such that

P(0,o)

[
X1 = x1, . . . , Xm = xm, ηm = η

]
> 0

}
.

Then the limit `P := limn→∞ |Zn|P/n exists also almost surely and is almost
surely constant. The proofs of Section 6.2 adapt also to this case and we
obtain the inequality `P > `0, if G has infinitely many ends. Theorem 6.18
holds also, if one considers the drift w.r.t. the Markovian distance. However,
if G has two ends, then it is possible to get ` = `0 in the case δL = 0: e.g.,
consider the Cayley graph of Z×Z2 w.r.t. the set of generators (±1, 0), (0, 1),
uniform weight 1 on the edges and µz(

�
y) = 1/4, where y = z or y ∼ z for

all z ∈ Z × Z2.

6.4.5 Greenian Distance

Another metric on G is given by the Greenian distance

dGreen(x, y) := − lnPx[Ty <∞],

where Ty is the hitting time of y ∈ V . We can define the Greenian metric
on Z2 oG analogously. These metrics are no path metrics induced by weights
on the edges. Blachère, Häıssinsky and Mathieu [3] proved that the entropy
and the rate of escape w.r.t. the Greenian distance of random walks on
groups are equal. If G is the Cayley graph of a group Γ and the random
walk on G is governed by a probability measure µ with suppµ = Γ, then
the entropy of a lamplighter random walk on Z2 o Γ is strictly bigger than
the entropy of the random walk’s projection onto G, because the Poisson
boundary of the lamplighter random walk projects non-trivially onto the
one of the random walk on the base graph; compare with Kaimanovich and
Vershik [15, Theorem 3.2]. It follows that also w.r.t. the Greenian distance
the lamplighter random walk is faster than its projection onto G.
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6.5 Summary

We considered a transitive, connected, locally finite graph G, where a pseudo-
metric on G arises from the weights on the edges. We proved that – under
suitable assumptions on G – a lamplighter random walk on G has bigger
drift than the random walk’s projection onto G. In general, this is not true.
Assuming non-zero drift of the base random walk, we proved in Section
6.1 that the lamplighter escapes always faster than its projection onto G, if
edges in Z2 oG corresponding to lamp switches have positive weight, that is,
if lamp switches are charged by the metric. In Section 6.2, we proved the
lamplighter’s acceleration for the case that those edges have weight zero:
for graphs with infinitely many ends, this was shown in Section 6.2.1, and
for two-ended graphs with the additional assumption of uniform weight 1
on all edges, the acceleration was proved in Section 6.2.2. The acceleration
of the lamplighter random walk arising from a base random walk with zero
drift was explained in Section 6.3, where we made no restrictions to the
weights and the number of ends of G. The proofs of this chapter adapt also
partially to other metrics and lamplighter random walk models, as explained
in Section 6.4.
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Chapter 7

Lamplighter Tree

In this chapter we investigate lamplighter random walks arising from a
simple random walk on homogeneous trees. We will construct lower and up-
per bounds for the rate of escape of the ‘Walk-or-Switch’ (WoS) lamplighter
random walk and a lower bound for the ‘Switch-Walk-Switch’ (SWS) lamp-
lighter random walk. The plan for this chapter is as follows: in Section 7.1,
we explain the special algebraic structure of the lamplighter tree and its
WoS random walk. In Section 7.2, we construct a lower and an upper bound
for the WoS lamplighter random walk’s drift, while in Section 7.3 we con-
struct another lower bound. Finally, in Section 7.4 we give a thighter lower
bound for the associated SWS lamplighter random walk than the one given
by Theorem 6.9.

7.1 Simple Random Walk on the Lamplighter Tree

Let 3 ≤ q ∈ N. Consider the homogeneous tree Tq = (V,E) of degree q, that
is, each vertex has q neighbours. We omit the use of weights on the edges.
Let S := {a1, . . . , aq}. Then all vertices of Tq can be described uniquely by
finite words over the alphabet S, where no two consecutive letters are equal,
such that we obtain the following symmetric neighbourhood property: each
a ∈ S is adjacent to the empty word o, which is assigned to any vertex; if
w ∈ V with last letter ai, then waj is adjacent to w for every aj ∈ S \ {ai}.
In this case w is closer to o than each waj . We can define a group operation
on V by concatenation of words with possible cancellations in the middle: if
u, v ∈ V are represented as words over S, then u◦v is the concatenation with
iterated deletions of all blocks of the form ‘aiai’. For instance, if u = a1a2a1,
v = a1a2a3, then u ◦ v = a1a3. In particular, the identity is o and we have
a−1
i = ai for all i ∈ {1, . . . , q}. With this definition Tq is the Cayley graph of

the free product group Z2 ∗ · · · ∗Z2 of q factors Z2; compare with Section 3.3.
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CHAPTER 7. LAMPLIGHTER TREE

In the sequel, we shall identify Tq with this group. The distance d(x, y) of
two points x, y ∈ Tq is the distance w.r.t. the natural graph metric on the
tree.

Furthermore, assume again that there sits a lamp at each vertex of Tq, which
can be switched off or on, again encoded by ‘0’ and ‘1’. The set of all finitely
supported functions η : Tq → Z2 is again denoted by N . The lamplighter
graph Z2 oTq is constructed as in Section 5.1 without assigning weights to the
edges and we take over the same notation unless it is remarked otherwise.
We construct a group such that its Cayley graph is exactly Z2 o Tq. For this
purpose, we now want to define a group operation on the vertex set N ×Tq.
For x, y ∈ Tq and η ∈ N , define

(xη)(y) := η(x−1y).

The group operation on N × Tq is then given by

(η1, x)(η2, y) :=
(
η1 ⊕ (xη2), xy

)
,

where x, y ∈ Tq, η1, η2 ∈ N and (0, o) is the identity. With this operation
we obtain the wreath product

Lq :=
(∑

x∈Tq

Z2

)
o Tq.

Let

SLq :=
{
(

�
o, o), (0, ai)

∣∣ ai ∈ S
}
.

The Cayley graph of Lq with respect to SLq is exactly the graph Z2 o Tq.
Thus, we identify in the sequel Z2 o Tq with Lq and call it the Lamplighter

Tree.

The length of a shortest path in the Cayley graph from (0, o) to (η, x) is again
denoted by |(η, x)|. As we will equip Z2 oTq with a nearest neighbour random
walk, |(η, x)| is the minimal amount of time needed for the lamplighter to
start at o with all lamps off and walk to x with restoring the configuration
η. This definition of distances corresponds to the model of Section 6.1 where
each edge has weight 1.

We now construct a nearest neighbour lamplighter random walk on Lq ac-
cording to Section 6.4.2. Let p ∈ (0, 1). Consider the sequence of i.i.d. random
variables (ik)k∈N valued in Lq, the increments, with distribution

µ(w) =





p, if w = (
�
o, o)

(1 − p)/q, if w = (0, ai) for some ai ∈ S
0, otherwise

.
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7.1. SIMPLE RANDOM WALK ON THE LAMPLIGHTER TREE

A lamplighter random walk on Lq starting at (0, o) is described by (Zn)n∈N0

in the following natural way:

Z0 := (0, o), Zn := Zn−1in for all n ≥ 1. (7.1)

The distribution of Zn is µ(n), the n-th convolution power of µ with respect
to the group structure of Lq. We write again Zn = (ηn, Xn) and denote by
P(η,x)[ · ] the probability measure that governs the lamplighter random walk
starting at (η, x) ∈ N × Tq instead of (0, o). In the case (η, x) = (0, o) we
omit the subindex. Our aim is to give bounds for the lamplighter’s rate of
escape

`WoS = lim
n→∞

|Zn|
n
.

It is well-known that simple random walk on Tq has rate of escape (q−2)/q.
Furthermore, we obtain for our random walk:

Lemma 7.1.

`0 := lim
n→∞

d(o,Xn)

n
= (1 − p)

q − 2

q
P − a.s.

Proof. Standing at some x ∈ Tq \{o}, we move away from o with probability
(1 − p)(q − 1)/q and towards o with probability (1 − p)/q. Thus, d(o,Xn)
is a classical birth-and-death Markov chain on the non-negative integers.
Therefore

`0 = lim
n→∞

d(o,Xn)

n
= (1 − p)

q − 1

q
− 1 − p

q
= (1 − p)

q − 2

q
P − a.s..

As a consequence, our lamplighter random walk is transient, since the pro-
jection (Xn)n∈N0 onto the tree is transient with non-zero drift.

We now state a lemma which we will use several times in later computations.

Lemma 7.2. For y ∈ Tq, let Ty := min
{
m ≥ 1 | Xm = y

}
be the first return

stopping time of y. Then:

1. If z = (ηx, x) ∈ Lq and y ∈ Tq is a neighbour of x in the tree, then

F := Pz[Ty <∞] =
1

q − 1
.

2.

G :=
∑

n≥0

P[Xn = o] =
q − 1

(1 − p)(q − 2)
.
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Proof. By vertex-transitivity, it is obvious that Pz[Ty <∞] depends only on
the neighbourhood property and not on the specific points x and y. So we
get the recursive equation

F = µ
(
(0, ai)

)
+ µ

(
(

�
o, o)

)
· F +

∑

aj∈S\{ai}
µ
(
(0, aj)

)
· F 2

for any ai ∈ S, or equivalently,

(1 − p)
q − 1

q
· F 2 − (1 − p) · F +

1 − p

q
= 0.

As (Xn)n∈N0 is transient, F < 1 has to be fulfilled. Thus, the right solution
of this quadratic equation is F = 1/(q − 1).

As

P[To <∞] = µ
(
(

�
o, o)

)
+
∑

ai∈S
µ
(
(0, ai)

)
· F = p+

1 − p

q − 1
,

it follows that

G =
∑

n≥0

P[To <∞]n =
1

1 − P[To <∞]
=

q − 1

(1 − p)(q − 2)
.

As (Xn)n∈N0 leaves every finite set almost surely, this sequence converges to
a random variable X∞ valued in ∂Tq, which can be identified with the set
of infinite words over the alphabet S such that no two consecutive letters
are equal.

Lemma 7.3. Let a ∈ S. Then

P
[
X∞ has first letter a

]
=

1

q
.

Proof. By conditioning to the last visit to o before finally walking to a with
no consecutive visit to o, we obtain

P
[
X∞ has first letter a

]
= G · µ

(
(0, a)

)
·
(
1 − F

)
=

1

q
.

Again, (ηn)n∈N0 converges almost surely pointwise to a random configuration
η∞ : Tq → Z2. The cone rooted at w ∈ Tq is

Cw :=
{
w′ ∈ Tq

∣∣ w is prefix of w′}.
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The complement Tq \Cw is denoted by Cw. Later computations require the
following probabilities:

ν1 := P
[
a1 is not first letter of X∞, η∞(Ca1) 6≡ 0

]
and

ν2 := P
[
a1 is first letter of X∞, η∞(Ca1) ≡ 0

]
.

There is a simple relation between ν1 and ν2: by vertex-transitivity and
Lemma 7.3, we have

ν1 = F · P[a1 is first letter of X∞, η∞(Ca1) 6≡ 0] =
1

q − 1
·
(1

q
− ν2

)
.

In the next section we will derive a formula for `WoS that depends on ν1,
ν2 respectively. We will also give lower bounds for these two probabilities,
providing upper and lower bounds for `WoS.

7.2 Lower and Upper Bound

In this section we construct a lower and an upper bound for `WoS. In par-
ticular, the lower bound will be strictly bigger than the trivial lower bound
`0 given by Lemma 7.1.

We reformulate our problem for finding a formula for `WoS. We proceed
analogously to Section 3.3, that is, we prove convergence of the sequence

(
E[|Zn+1|] − E[|Zn|]

)
n∈N

and compute its limit, which then must equal `WoS. Rewriting the elements
of this sequence we obtain

E[|Zn+1|] − E[|Zn|] =
∑

g∈SLq

µ(g)

∫

Lq

(
|gZn| − |Zn|

)
dP.

Define the random variables

Yg,n := |gZn| − |Zn|

for any given g ∈ SLq and n ∈ N. To understand the behaviour of Yg,n for
n → ∞, we now investigate differences of the form |g(η, x)| − |(η, x)|. For
this purpose, define for a ∈ S and η ∈ N the configurations

ηa(w) :=

{
η(w), if w ∈ Ca

0, otherwise
and ηa(w) :=

{
η(w), if w ∈ Ca

0, otherwise
.

With this notation we have η = ηa ⊕ ηa.

101



CHAPTER 7. LAMPLIGHTER TREE

Proposition 7.4. Let a ∈ S, x ∈ Ca and η ∈ N . Then

∣∣(0, a)(η, x)
∣∣ −

∣∣(η, x)
∣∣ =

{
1, if ηa 6≡ 0

−1, if ηa ≡ 0
.

Proof. Write x = ay with y ∈ Ca. Since ηa(w) = 1 if and only if (aηa)(aw) =
1 for w ∈ Tq, we obtain

∣∣(η, x)
∣∣ =

∣∣(ηa, o)
∣∣+
∣∣(ηa, ay)

∣∣ =
∣∣(ηa, o)

∣∣ + 1 +
∣∣(aηa, y)

∣∣.

In the last equation we splitted off the necessary walking step from o to a
and ‘shifted’ (ηa, ay) isometrically by multiplying from the left with (0, a).
Observe that

∣∣(aηa, y)
∣∣ equals the minimal distance of a walk starting in a,

then realizing the configuration ηa before finally reaching ay. Note also that
aCa = Ca and aCa = Ca. See Figure 7.1.

o

o

C

C

y

Ca a

Caa

a

a

ay

η(a   ,y)

(  ,ay)η

Figure 7.1: Shift by (0, a) from (η, ay) to (aη, y)

Let η′ := aη. Then (0, a)(η, x) = (η′, y). Furthermore, η′a = aηa and η′a = aηa.
Hence, ∣∣(η′, y)

∣∣ =
∣∣(η′a, o)

∣∣+
∣∣(η′a, y)

∣∣ =
∣∣(η′a, o)

∣∣+
∣∣(aηa, y)

∣∣.
As ηa(w) = 1 if and only if η′a(aw) = 1, it follows that

∣∣(η′a, o)
∣∣ =

{
2 +

∣∣(ηa, o)
∣∣, if ηa 6≡ 0

0, if ηa ≡ 0
.

This finishes the proof.

Analogously:

Proposition 7.5. Let a ∈ S, x ∈ Ca and η ∈ N . Then

∣∣(0, a)(η, x)
∣∣ −

∣∣(η, x)
∣∣ =

{
−1, if ηa 6≡ 0

1, if ηa ≡ 0
.
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Proof. Observe again that ηa(w) = 1, ηa(w) = 1 respectively, if and only if
(aηa)(aw) = 1, (aηa)(aw) = 1 respectively, for any w ∈ Tq. We obtain

∣∣(η, x)
∣∣ =

∣∣(ηa, o)
∣∣ +
∣∣(ηa, x)

∣∣.

Furthermore,
∣∣(ηa, o)

∣∣ =

{
2 +

∣∣(aηa, o)
∣∣, if ηa 6≡ 0

0, if ηa ≡ 0
.

Let η′ := aη. Then (0, a)(η, x) = (η′, ax). Furthermore, η′a = aηa and
η′a = aηa. See Figure 7.2.

η o

o

  x

(  ,x)

 

C

C

C

C 
 η(a   ,ax)

a

a
a

ax

a
a

a

Figure 7.2: Shift by (0, a) from (η, x) to (aη, ax) with x ∈ Ca

Hence,

∣∣(η′, ax)
∣∣ =

∣∣(η′a, o)
∣∣+
∣∣(η′a, ax)

∣∣ =
∣∣(aηa, o)

∣∣+ 1 +
∣∣(ηa, x)

∣∣.

This finishes the proof.

Proposition 7.6. Let (η, x) ∈ N × Tq. Then

∣∣( �
o, o)(η, x)

∣∣ −
∣∣(η, x)

∣∣ =

{
1, if η(o) = 0

−1, if η(o) = 1
.

Proof. Obviously, (
�
o, o)(η, x) and (η, x) differ only by the lamp state at the

root o, as (
�
o ⊕ η)(o) = 1 − η(o). This proves the claim.

Propositions 7.4, 7.5 and 7.6 show that Yg,n ∈ {−1, 1}. More precisely,
Yg,n remains unchanged after the last visit in o, that is, Yg,n converges al-
most surely. By Lebesgue’s Dominated Convergence Theorem, convergence
of (E[|Zn+1| − E[|Zn|])n∈N follows. Now we want to compute the integrals∫
Yg,n dP. For this purpose, we need the following probabilities:

Lemma 7.7.

P
[
η∞(o) = 0

]
=

q − 2 + p

(1 + p) q − 2
and P

[
η∞(o) = 1

]
=

p(q − 1)

(1 + p) q − 2
.
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Proof. Let

Ũ := P
[
To <∞, X1 6= o

]
=
∑

a∈S
µ
(
(0, a)

)
F =

1 − p

q − 1
,

G̃ :=
∑

n≥0

P
[
Xn = o,∀j < n : ¬

(
Xj = o ∧ ij+1 = (

�
o, o)

)]

=
1

1 − Ũ
=

q − 1

q − 2 + p
.

Now we can compute the proposed probabilities:

P
[
η∞(o) = 0

]
=

∑

m≥0

(
G̃ · p

)2m · G̃ · (1 − p) · (1 − F )

=
q − 2 + p

(1 + p) q − 2
,

P
[
η∞(o) = 1

]
= 1 − P

[
η∞(o) = 0

]
=

p(q − 1)

(1 + p) q − 2
.

By Propositions 7.4, 7.5, 7.6 and Lemma 7.7, we obtain for g = (
�
o, o)

∫
Yg,n dP = P

[
η∞(o) = 0

]
− P

[
η∞(o) = 1

]
=

(1 − p)(q − 2)

(1 + p) q − 2

and for g = (0, a) with a ∈ S
∫
Yg,n dP = P

[
X∞ has first letter a, η∞(Ca) 6≡ 0

]

−P
[
X∞ has first letter a, η∞(Ca) ≡ 0

]

+P
[
X∞ does not have first letter a, η∞(Ca) ≡ 0

]

−P
[
X∞ does not have first letter a, η∞(Ca) 6≡ 0

]

=
(1

q
− ν2

)
− ν2 +

(q − 1

q
− ν1

)
− ν1

= 1 − 2ν1 − 2ν2.

Now we can give two explicit formulas for the rate of escape:

Theorem 7.8.

`WoS =
(1 − p)(q − 2)

q
·
(
1 + 2qν1 +

pq

(1 + p) q − 2

)

=
(1 − p)(q − 2)

q
·
(q + 1

q − 1
− 2q

q − 1
ν2 +

pq

(1 + p) q − 2

)
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Proof. By Lebesgue’s Dominated Convergence Theorem and the above com-
putations, we get

`WoS =
∑

g∈SLq

µ(g)

∫
lim
n→∞

(
`(gZn) − `(Zn)

)
dP

=
∑

a∈S

(
µ
(
(0, a)

)
·
(
1 − 2ν1 − 2ν2

))
+ µ

(
(

�
o, o)

)
· (1 − p)(q − 2)

(1 + p) q − 2

= (1 − p) · (1 − 2ν1 − 2ν2) +
p(1 − p)(q − 2)

(1 + p) q − 2
.

The rest follows by substituting ν1 = 1
q−1(1

q
− ν2), ν2 = 1

q
− (q − 1)ν1

respectively.

Remark: Observe that ν2 = Ǧ · (1 − p)/q · (1 − F ) holds, where

Ǧ =
∑

η∈N ′

G(η) with G(η) =
∑

n≥0

p(n)
(
(0, o), (η, o)

)

for N ′ := {η ∈ N | ∀w ∈ Ca1 : η(w) = 0}. The functions G(η) are Green
functions evaluated at 1. As Green functions are in general hard to compute
or even often not computable and since the structure of the Cayley graph
of Lq is very complex, we are only able to give a lower and upper bound
for `WoS by estimating ν1 and ν2 from below. For this purpose, we need the
following lemma:

Lemma 7.9. Let z = (ηx, x) ∈ Lq and let y ∈ Tq be a neighbour of x
in the tree. Then the probability that the lamplighter, starting at x with
configuration η, reaches y without changing any lamps during this walk is

F̄ := Pz

[
Ty <∞,∀k < Ty : ik 6= (

�
o, o)

]
=
q −

√
q2 − 4(q − 1)(1 − p)2

2(q − 1)(1 − p)
.

Proof. By vertex-transitivity, we get the recursive equation

F̄ = µ
(
(0, ai)

)
+

∑

aj∈S\{ai}
µ
(
(0, aj)

)
F̄ 2 for any ai ∈ S

with solutions

F̄ =
q ±

√
q2 − 4(q − 1)(1 − p)2

2(q − 1)(1 − p)
,

where the right one has to to fulfill F̄ < 1. This proves the lemma.

Now we can estimate ν1 and ν2 from below:

105



CHAPTER 7. LAMPLIGHTER TREE

Lemma 7.10.

ν1 ≥ p

(1 + p) q2 − 2q
=: ν̂1 and

ν2 ≥ Ĝ2

1 − Ĝ2p2

(1 − p)(q − 2)

q(q − 1)
=: ν̂2,

where

Ĝ =
2(q − 1)

q − 2 +
√
q2 − 4(q − 1)(1 − p)2

.

Proof. We restrict the event
[
η∞(Ca1) 6≡ 0

]
to the event

[
η∞(a1) = 1

]
.

Hence,

ν1 ≥ F ·
∑

m≥0

(
G̃ · p

)2m+1 · G̃ · 1 − p

q
·
(
1 − F

)

=
p

(1 + p) q2 − 2q
.

For the computation of the lower bound of ν2, we introduce some further
notation:

Û := P
[
To <∞,∀j < To : ¬

(
Xj ∈ Ca1 ∧ ij+1 = (

�
o, o)

)]

=
q − 1

q
(1 − p) · F̄ +

1 − p

q
· F,

Ĝ :=
∑

n≥0

P
[
Xn = o,∀j < n : ¬

(
Xj ∈ Ca1 ∧ ij+1 = (

�
o, o)

)]

=
1

1 − Û
.

We restrict the event
[
η∞(Ca1) ≡ 0

]
to the event that no lamps in Ca1 \ {o}

are switched on, that is, ηn(Ca1 \ {o}) ≡ 0 for all n ∈ N, while we allow to
switch the lamp at o for an even number of switches. This yields

ν2 ≥
∑

m≥0

(
Ĝ · p

)2m · Ĝ · 1 − p

q
· (1 − F )

=
Ĝ

1 − Ĝ2p2
· (1 − p)(q − 2)

q(q − 1)
.

Now we can give an upper and lower bound for the rate of escape:
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Corollary 7.11.

`WoS ≥ (1 − p)(q − 2)

q
· q − 2 + 2p(q + 1)

(1 + p) q − 2
=: `low and

`WoS ≤ (1 − p)(q − 2)

q
·
(q + 1

q − 1
− 2q

q − 1
ν̂2 +

pq

(1 + p) q − 2

)
=: `up

2

Observe that the lower bound satisfies

`low >
(1 − p)(q − 2)

q
= lim

n→∞
d(o,Xn)

n
.

Numerical sample computations are presented at the end of the next section.
The technique used in Section 6.1 provides also

`WoS ≥ (1 − p)(q − 2)

q
·
(
1 + p · (1 − p) · q − 2

q − 1

)
.

However, it can be shown that `low is stricty bigger than this lower bound.

7.3 Another Lower Bound

We construct another lower bound for `WoS, which is better than `low if
p ≤ (q − 2)/(q − 1). For this purpose, we give another lower bound for ν1

and then apply Theorem 7.8.

Observe that

ν1 = F · P
[
a is first letter of X∞, η∞(Ca1) 6≡ 0

]
︸ ︷︷ ︸

=:ν3

.

Observe that η∞(Ca1) 6≡ 0 means that at least one lamp in Ca1 rests on
forever. Now we distinguish which of the lamps in Ca1 ∩ suppη∞ is the first
lamp to be switched on, while it is allowed to turn it off temporarily. More
formally, define the random variable l1 such that l1 = x ∈ Ca1 ∩ supp η∞
if Xn = Xn+1 = x holds for some n ∈ N0 with ηm(y) = 0 for all m < n
and all y ∈ Ca1 ∩ supp η∞. It is sufficient to define l1 only on the event
[η∞(Ca1) 6≡ 0]. Define also

L :=
∑

n≥1

P
[
Xn = a1,∀m ∈ {1, . . . , n} : Xm 6= o

]

=
1 − p

q
·
∑

n≥0

(q − 1

q
(1 − p)F + p

)n
=

1

q − 1
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and

Ḡ :=
∑

n≥0

P
[
Xn = o,∀k ≤ n : ik 6= (

�
o, o)

]

=
∑

n≥0

(
(1 − p)F̄

)n
=

1

1 − (1 − p)F̄
.

Now

ν3 =
∑

x∈Ca1

P[a1 is first letter of X∞, η∞(Ca1) 6≡ 0, l1 = x]

≥
∑

x∈Ca1

F̄ d(o,x) · Ḡ ·
∑

m≥0

(
p G̃
)2m+1 · Ld(o,x) · 1 − p

q
· (1 − F )

=
ḠG̃p

1 − p2G̃2
· 1 − p

q
· q − 2

q − 1
·
∑

n≥0

(q − 1)n
(
F̄ · L

)n

=
ḠG̃p

1 − p2G̃2
· 1 − p

q
· q − 2

q − 1
· 1

1 − F̄

=
p(q − 2 + p)

q
(
(1 + p) q − 2

)(
1 − F̄

)(
1 − (1 − p)F̄

) =: ν̂3.

Thus:

Corollary 7.12.

`WoS ≥ (1 − p)(q − 2)

q
·
(
1 +

2q

q − 1
ν̂3 +

pq

(1 + p) q − 2

)
= `low,2

2

With the help of mathematica we can show that `low,2 ≥ `low if and only
if p ≤ (q − 2)/(q − 1).

Table 7.3 compares the values of the trivial lower bound given by Lemma
7.1, namely limn→∞ d(o,Xn)/n = (1 − p)(q − 2)/q, the lower bounds `low
and `low,2 and the upper bound `up for different values of q and p. The
relative precision of the approximation is the quotient

`up − max{`low, `low,2}
1 − limn→∞ d(o,Xn)/n

,

which decreases when the degree q of the tree increases: large q yields tighter
bounds.
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q p limn→∞
d(o,Xn)

n
`low `low,2 `up

relative
precision

3 4/5 0.067 0.145098 0.144410 0.157358 0.01314
3 2/3 0.111 0.234567 0.233467 0.253779 0.02161
3 1/2 0.167 0.333 0.333 0.359733 0.03167
3 1/4 0.25 0.428571 0.438050 0.461289 0.03168

5 4/5 0.12 0.216 0.215942 0.221533 0.00629
5 2/3 0.2 0.347368 0.347629 0.355735 0.01013
5 1/2 0.3 0.490909 0.492585 0.501825 0.01320
5 1/4 0.45 0.635294 0.641344 0.647154 0.01056

10 4/5 0.16 0.256 0.256029 0.257516 0.00177
10 2/3 0.267 0.412121 0.412311 0.414351 0.00278
10 1/2 0.4 0.584615 0.585277 0.587408 0.00355
10 1/4 0.6 0.771429 0.773099 0.774203 0.00276

20 4/5 0.18 0.273176 0.273189 0.273569 0.00046
20 2/3 0.3 0.440426 0.440487 0.440995 0.00073
20 1/2 0.45 0.626785 0.626975 0.627483 0.00093
20 1/4 0.675 0.836413 0.836835 0.837079 0.00075

Figure 7.3: Sample computations of lower and upper bounds

7.4 Switch-Walk-Switch Random Walk

We now investigate the associated Switch-Walk-Switch lamplighter random
walk on the homogeneous tree Tq and its drift in the context of Section 6.4.1.
That is, we have p0(x, y) = 1/q for any pairs of neighbours x, y ∈ Tq and
for p ∈ (0, 1) we define µx(

�
x) = p and µx(0) = 1− p. Each edge of Tq shall

have weight 1 and additionally we set δL = 0. Furthermore, Tq \B(x, 0) has
q ≥ 3 different connected components, that is, r = 0.

Then |z| is the minimal weight of all paths in Z2 o Tq joining (0, o) with
z ∈ N × Tq, while d(·, ·) is again the natural graph metric on Tq. In other
words, |z| is the distance of o to z in the Caley graph of the wreath product
Lq w.r.t. the set of generators

S∗
Lq

:=
{
(

�
A, a) | a ∈ S, A ∈ {∅, {o}, {a}, {o, a}}

}
.
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In this case it is well-known that limn→∞ d(o,Xn)/n = (q − 2)/q. Our aim
is to give a tighter lower bound for `SWS := limn→∞ |Zn|/n than given by

q − 2

q
· q

3(q − 1) + 4(q − 2)p(1 − p)

q3(q − 1)
, (7.2)

which is extrapolated from relation (6.11).

We proceed similarily to Section 6.2.1, but with some modifications. As
r = 0 and the metric d(·, ·) is integer-valued, ψ becomes the identity on N0

and

ek := min
{
m ∈ N0

∣∣ d(o,Xm) = k ∧ ∀n ≥ m : Xn ∈ CXm

}

for k ∈ N0. For k ∈ N, the pseudo-increments now become

∆k :=

{
0, if ηek

(w) = 0 for all w ∈ CXek−1
\ (CXek

∪ {Xek−1
})

2, otherwise
. (7.3)

The set CXek−1
\ (CXek

∪ {Xek−1
}) is the union of the cones Cz, where z

is a forward neighbour of Xek−1
distinct from Xek

. The pseudo-increment
∆k represents a lower bound for the length of a possible deviation inside
CXek−1

\ CXek
, when walking from o to Xn, where ek < n, with restoring

the configuration ηn. Note that a shortest tour from o to Xn does not visit
the set CXek−1

\ (CXek
∪ {Xek−1

}). If at time ek−1 the lamplighter stands

at g = g′a1 ∈ Tq, then walks to gai, i /∈ {1, q}, thereby switching the
lamp at gai on, walks back to g without flipping the lamp state at gai,
followed by walking to gaq and rests henceforth in Cgaq , then ∆k = 2. See
Figure 7.4. Observe again that this setting constitutes only a special case of
Section 6.2.1.

o

ga
2 ga

i

ga
q−1

ga
q

g

Figure 7.4: Interpretation of ∆k

Analogously, we have for all k ≥ 1

∣∣(ηek
, Zek

)
∣∣ ≥ k +

k∑

j=1

∆j . (7.4)
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To estimate the distribution of ∆k, we distinguish if lamps are on in the
set CXek−1

\ {Xek−1
} at time ek−1 or not and if lamps are on in the set

CXek−1
\
(
CXek

∪ {Xek−1
}
)

at time ek. For x ∈ Tq \{o}, we use the notation

x− to express the unique neighbour of x closer to o. For k ∈ N, let

E :=
{
(η, x) ∈ N × (Tq \ {o})

∣∣ ∃w ∈ Cx− \ (Cx ∪ {x−}) : η(w) = 1
}
,

Ek,0 :=
{
(η, x) ∈ N × Tq

∣∣ |x| = k,∀w ∈ Cx \ {x} : η(w) = 0
}

and

Ek,2 :=
{
(η, x) ∈ N × Tq

∣∣ |x| = k,∃w ∈ Cx \ {x} : η(w) = 1
}
.

Observe that for k ≥ 2 and r ∈ {0, 2}, it is

P
[
Zek−1

∈ Ek−1,r

]
=
∑

m≥0

∑

(η,x)∈Ek−1,r

P
[
Xm−1 = x−, Zm = (η, x)

]
·
(
1 − F

)
.

Thus,

P[∆k = 2 | Zek−1
∈ Ek−1,r]

=
1

P
[
Zek−1

∈ Ek−1,r

]
∑

m≥0

∑

(η,x)∈Ek−1,r

P
[
Xm−1 = x−, Zm = (η, x)

]
·

·
(∑

l≥1

P(η,x)

[
∀τ ≤ l : Xτ 6= x−, Xl−1 = x, (ηl, Xl) ∈ E

])
·
(
1 − F

)

≥ inf
(η,x)∈Ek−1,r

∑

l≥1

P(η,x)

[
∀τ ≤ l : Xτ 6= x−, Xl−1 = x, (ηl, Xl) ∈ E

]
.

Now we can prove:

Lemma 7.13. We have E[∆k] ≥ B for all k ∈ N, where

B :=
4

q3
· (q − 1) · (q − 2) · p · (1 − p) > 0.

Proof. Let k ∈ N. Walking to a forward neighbour of Zek−1
with switching

the lamp there, walking back to Zek−1
, followed by a walk to some other

forward neighbour of Zek−1
, we get by the above computations:

P[∆k = 2 | Zek−1
∈ Ek−1,0] ≥ 2 · (q − 1) · p(1 − p)

q2
· q − 2

q
=

1

2
B > 0.

If Zek−1
∈ Ek−1,2, then there is a forward subcone Cw of CZek−1

such that
at least one lamp in Cw is on. With a walking step from Zek−1

into one of
the forward subcones of CZek−1

different from Cw, we also obtain

P[∆k = 2 | Zek−1
∈ Ek−1,2] ≥

q − 2

q
≥ 1

2
B.
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Thus, we obtain for k ≥ 2

E[∆k] = P[Zek−1
∈ Ek−1,0] · E[∆k | Zek−1

∈ Ek−1,0]

+P[Zek−1
∈ Ek−1,2] · E[∆k | Zek−1

∈ Ek−1,2] ≥ B > 0.

We have to handle the case k = 1 separately: here, we have P[Ze0 ∈ E0,0] = 1
and thus

E[∆1] ≥ 4 · q · p(1 − p)

q2
· q − 1

q
≥ B.

Now we can give another lower bound for the drift of the Switch-Walk-Switch
lamplighter random walk on Tq:

Theorem 7.14. For the Switch-Walk-Switch lamplighter random walk on
the homogeneous tree Tq with simple base random walk, assuming δL = 0,

`SWS ≥ q − 2

q
· q

3 + 4(q − 1)(q − 2)p(1 − p)

q3
.

Proof. The proof works analogously to the proof of Theorem 6.9, except
that we use ∆k as defined by (7.3), providing E[∆k] ≥ B.

Observe that the lower bound for `SWS given by the last theorem is con-
siderably bigger than the lower bound given by (7.2).

It is also possible to construct lower and upper bounds for the rate of es-
cape of this random walk by the technique used in Section 7.2. Besides the
much greater complexity in the SWS-case, numerical computations show
that those bounds are less tight than in the WoS-case of Section 7.2, that
is, the spread between the lower and upper bound is bigger.
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